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Abstract.

Existing nonlinear Bayesian filtering frameworks serve as an effective tool for the
model-based filtering of noisy ECG recordings. However, since these methods are
based on linear phase assumption, for some heart defects where abnormal waves
only appear in certain cycles of the ECG, they are unable to simultaneously filter
the normal and abnormal ECG segments. In this paper, a new method based
on Dynamic Time Warping (DTW), which benefits information of all channels
for nonlinear phase state calculation is presented. Results on real and synthetic
data show that the new method can be successfully applied for filtering normal
and abnormal ECG segments simultaneously.
Keywords: ECG denoising, Kalman filtering, nonlinear Bayesian filtering, linear
phase, dynamic time warping.

1 Introduction

The extraction of high-resolution pathological cardiac signals from a multi-
channel noisy electrocardiogram (ECG) remains an important problem for the
biomedical engineering community. Despite of the rich literature in the field
of ECG processing, there are still many clinical applications that lack reliable
signal processing tools to extract pathological ECG beats contaminated with
background noise. In [1], Bayesian filters such as the Extended Kalman Filter
(EKF) and Extended Kalman Smoother (EKS) have been proposed for ECG
denoising. The state-space model used for these filters is inspired from [2],
which suggests the use of Gaussian mixtures to model realistic synthetic ECGs.
The basic idea is to approximate the PQRST waves by the sum of 5 weighted
Gaussian shape functions. In [1], the synthetic ECG generator proposed in [2],
transferred into polar coordinates from Cartesian coordinates. This modifica-
tion and some other modifications make it simpler and more straightforward in
interpretation [1]. The modified model in its discrete form, with the assumption
of a small sampling period of δ is:

θk+1 = (θk + ωδ)mod(2π)

zk+1 = −
∑

i∈{P,Q,R,S,T}
δ
αiω

b2i
∆θi,kexp(−

∆θ2i,k
2b2i

) + zk + η
(1)
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where θ and z are the state variables in polar coordinates and k denotes the
discrete time index. The αi and bi correspond to the peak amplitude in millivolts
and center parameters of the Gaussian functions used for modeling each of the
ECG components. We define ∆θi,k = (θk−ψi)mod(2π), in which, ψi corresponds
to the center of the ith Gaussian function. ω is the angular velocity of the
trajectory as it moves around the limit cycle in the x− y plane [1], and ηz is a
random additive noise. The system state and process vectors are defined as:{

xk = [θk, zk]T

wk = [αP , ..., αT , bP , ..., bT , ψP , ..., ψT , ω, ηz]
T

(2)

with Qk = E
{
wkw

T
k

}
as process noise covariance matrix. The noisy ECG is

assumed as observation of the Kalman filter. In addition, by detecting the R-
peaks of ECG signal, an additional observation is achieved. In this model it
is assumed that the phase values are ’strictly’ linear between 0 and 2π in the
intermediate samples of two R-peaks. The additional phase observation φ and
the noisy ECG measurements, s, are related to the state vector as follows:[

φk
sk

]
=

[
1 0
0 1

]
.

[
θk
zk

]
+

[
uk
vk

]
(3)

where uk and vk are the corresponding observation noises, and the observation
noise covariance matrix is given as Rk = E

{
[uk, vk]T [uk, vk]

}
.

In this model a ’strictly’ linear phase has been assumed in the state equation
of the model. However, it is not always a valid assumption. Application of this
model to many of the common ECG abnormalities is rather straightforward,
since the model parameters may be simply recalculated and used in the filter
model. However, for some heart defects such as the Premature Ventricular Con-
traction (PVC), where the abnormal wave only appears in certain cycles of the
ECG, some modifications in the state equations are necessary to simultaneously
filter the normal and abnormal segments. In order to do so, in this paper we
intend to modify the phase equation using information of different channels. The
rest of the paper is organized as follows: In section 2 equations and theory sup-
porting our proposed method are described. In section 3 results of the proposed
method applied on different data and discussion about the results are presented.
Finally, our conclusion is stated in section 4.

2 Method

The first modification of the phase state can be adding a random additive noise
ηθ to the phase state equation (in this paper we refer to it as ’flexible’ linear).
Therefore, the phase model would no longer be ’strictly’ linear and slight fluc-
tuations around linear phase are allowed. Hence, state equations are:

θk+1 = (θk + ωδ)mod(2π) + ηθ

zk+1 = −
∑

i∈{P,Q,R,S,T}
δ
αiω

b2i
∆θi,kexp(−

∆θ2i,k
2b2i

) + zk + ηz
(4)
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Although this modification may improve performance of the filter, it still assumes
that all beats are almost similar and no beat differs much from the others.
Moreover, it only uses information of the current channel to make ECG phase.
The second modification, which benefits information of all channels is using
Dynamical Time Warping (DTW) [3] for phase state calculation. DTW is a
method for measuring similarity between two sequences or matrices, which may
vary in time or speed. This method is widely used in speech recognition to
recognize a unique word when it is pronounced fast or slowly. In this method an
optimal match between two given sequences or matrices with certain restrictions
is found [3]. For our problem of interest, a multichannel ECG beat reference
E(l) ∈ RM is firstly selected and a linear phase is assigned to it, then current
multichannel ECG beat s(k) ∈ RM and the reference ECG beat are nonlinearly
warped to optimize their similarity of their nonlinear variations. Finally, as it is
illustrated in Figure 1, the phase observation of the current ECG beat is achieved
by aligning linear phase of the reference ECG beat, according to optimal match
of the reference and current ECG beats. Computational cost of the method is
low and DTW algorithm can be implemented easily. This model of phase state
can also be further modified by adding a random additive noise to make it more
flexible (in this paper we refer to it as ’flexible’ DTW).
Estimation of phase state based on DTW methods is especially valuable when
in some beats one or more ECG waves (P, Q, R, S and T) appear sooner or later
than normal ones. In those cases, since DTW methods search for optimal match
between reference and current beats, premature or delayed occurrence of the
ECG waves are compensated in the phase state. Therefore, the EKF filter can
better follow premature or delayed ECG waves. Another parameter that may
also affect filtering performance is expansion or contraction of each ECG wave
in some dissimilar beats. Here again, it is possible to compensate the deviation
from linear phase using DTW methods.

3 Results

Figure 2 shows results of proposed methods on a part of the record 116 of the
MIT-BIH Arrhythmia Database [4], [5]. This database consists of two-channel
ambulatory ECG recordings, in which some beats significantly differ from other
beats. Mean ECG has been adopted as reference ECG beat of DTW methods.
Mean ECG and other parameters of the method have been calculated according
to [1]. As it is seen in Figure 2, the best result is provided by ’flexible’ DTW.
Although ’flexible-linear’ phase provides better results in comparison to ’strict-
linear’ phase, it is still unable to follow a beat, which is dissimilar to other beats.
In order to have better comparison, residual results which are subtraction of the
original signal from filtered signals are plotted on the right column of Figure 2.
As it is seen, some ECG parts are deteriorated by ’strict’ and ’flexible-linear’
phases, while, DTW methods are able to follow the signal in these scenarios.

In order to study the performance of the methods in different situations,
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Figure 1: A typical example of DTW method for finding optimal match between
reference ECG beat and current ECG beat.

synthetic ECG data have been generated to model these dissimilarities. In (1) ψi
denotes location of Gaussian functions, so premature and delayed occurrence of
the ECG waves can be modeled with varying ψi around their values. Expansion
and contraction of ECG waves can also be modeled with varying bi. Figure
3 shows results of different methods for different range of ψi variations, where
100% corresponds to 2π. The synthetic data consist of eight channels and input
signal to noise ratio (SNR) is equal to 15 dB. For each value of ψi variations, fifty
trials have been carried out to have statistically reliable results. As it is seen,
when ψi variations are very low and all beats are very similar, linear methods
provide better results, since noise cannot affect them. However, DTW methods
are affected by the noise, nevertheless, they did not deteriorate input signals,
because their output SNRs are still more than 15 dB. As ψi variations become
larger, the difference between performance of linear and DTW methods become
lower. For variation equal to 0.5%, same performance is achieved and from this
point, DTW methods dramatically outperform linear ones.

Similar trials have been carried out for variations of bi, width of Gaussian
functions. As it can be seen in Figure 4, here gain, for low values of bi variations,
linear methods outperform DTW methods. However, as bi variations become
larger, DTW methods significantly outperform linear methods.

Figures 3 and 4 show that adding noise to phase state equation can lead
to improve results of DTW methods for large signal distortions. Practically,
for very slight variations of ψi or bi, ’flexible’ linear method provides the best
results, while, for larger values of ψi or bi variations, ’flexible’ DTW method
outperforms other methods.
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Figure 2: Illustration of proposed method on real data. Left, Up to Down: Orig-
inal record 116 of the MIT-BIH Arrhythmia Database, ’strict’ linear, ’flexible’
linear, DTW, ’flexible’ DTW outputs. Right, Up to Down: Subtraction of the
original ECG from ’strict’ linear, ’flexible’ linear, DTW, ’flexible’ DTW outputs.
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Figure 3: Mean value of EKF output SNR for different range of ψ variations
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Figure 4: Mean value of EKF output SNR for different range of b variations

4 Conclusion

Different versions of nonlinear Bayesian filtering frameworks have been presented
to filter noisy ECG recordings. However, due to the linear phase assumption,
they have not been able to filter normal and abnormal ECG segments simultane-
ously. In this work a new method based on DTW for phase state calculation has
been presented. Results on real and synthetic data show that DTW methods
provide more reliable phase state when dissimilarity between current beat and
other beats is large, because this dissimilarity is compensated in phase state.
This method may therefore serve as an effective tool for simultaneously filtering
normal and abnormal ECG segments. Moreover, optimal match between refer-
ence and current beats, provided by DTW method, may be used in future works
as a feature to classify normal and abnormal beats.
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