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Abstract. We compare well-known action selection policies used in

reinforcement learning like ǫ-greedy and softmax with lesser known ones

like the Gittins index and the knowledge gradient on bandit problems. The

latter two are in comparison very performant. Moreover the knowledge

gradient can be generalized to other than bandit problems.

1 Introduction

In the multi-armed bandit problem (or bandit problem for short), introduced by
Robbins [10], the agent has to decide at each time step which one of K different
arms to choose in order to maximize its total expected reward. For each arm, the
rewards are generated according to a given family of distributions with unknown
parameters, e.g. the family of normal distributions.

The bandit problem has received a lot of attention since it reflects the essence
of the trade-off between exploration, i.e. to collect enough information about
all arms in order to learn which one is best, and exploitation, i.e. to use that
information to avoid the underperforming arms. If the parameters of the reward
distributions are known, then it is optimal to always select the arm with the
highest mean. However, since these distributions are unknown, the agent has to
explore the different arms hoping not to spend too much time exploring arms
which are not the best ones. Often simple heuristics are used as action selection

policy, e.g. the ǫ-greedy policy selects the arm believed to be best most of the
time while every now and then another arm is selected to collect information
about it [12].

In this paper we evaluate empirically a number of action selection policies
including the Gittins index policy and the knowledge gradient policy on a test
set of bandit problems. Although trading-off exploration and exploitation is very
important for reinforcement learning in general and the bandit problem reflects
the essence of this trade-off, only few empirical studies have been published,
e.g. [13], and we are aware about only one systematic empirical evaluation [8].

The rest of the paper is organized as follows. In Section 2, we present the
bandit problem and in Section 3, the action selection policies are introduced.
We present our results and conclude in Section 4.
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2 The Bandit Problem

In the bandit problem, the environment remains forever in the single physical

state s regardless which one of the K actions1 i = 1, · · · , K are taken. The
rewards of the actions i are drawn from normal distributions with different means
µi but common standard deviation σ. However, these parameters are unknown

to the agent. In this paper we focus on the infinite horizon with geometrical
discount factor γ, i.e. the agent has to maximize the total expected reward
E(

∑∞
n=0

γnrn) where rn is the reward obtained at time step n since the Gittins
index theorem, a strong theoretical result, holds for this case.

Already, Bellman [2] realized that the action selection problem can be for-
mulated as a dynamic program. Therefore, the agent maintains K knowledge

states2, one for each arm reflecting the agent’s knowledge about that arm. At
each time step n, the following information is available: 1) the number of times
ni(n) each arm i has been tried3, and 2) the estimated mean µ̂i(n) and variance
σ̂i(n) of the corresponding reward distribution based on these ni trails. Assume
that at time step n, arm i is selected and reward rn+1 is received. The corre-
sponding knowledge state (ni, µ̂i, σ̂

2
i ) is updated as follows while the other states

remain unchanged:

ni+1 = ni + 1 (1)

µ̂i+1 = (1 −
1

ni

)µ̂i +
1

ni

rn+1 (2)

σ̂2
i+1 =

ni − 2

ni − 1
σ̂2
i +

1

ni

(rn+1 − µ̂i)
2 (3)

Another important quantity is the variance ˆ̄σ2
i of the mean µ̂i, i.e. ˆ̄σ2

i =
σ̂2
i /ni. If ˆ̄σ

2
i is low, our confidence in our estimate µ̂i is high.

But now, the agent has to maintainK knowledge states and when the number
of arms K is large, one faces the ’curse of dimensionality’ [2]. However, in case of
the bandit problem it is possible to compute for each arm its Gittins index and
this independently from the other ones. And, the optimal policy is to choose the
arm with the highest index. This way, a K-dimensional problem is reduced to K
1-dimensional problems and there is no curse as proven in Gittins and Jones [5].

Unfortunately, this result is only valid for bandit problems with certain prop-
erties and cannot be generalized easily. Recently, a heuristic inspired by the
Gittins index policy that can be generalized was introduced: the knowledge
gradient [6, 4].

1In order to simplify mathematical notation, actions are represented by their index, i.e.
1, · · · ,K instead of a1, · · · , aK .

2Bellman used information state instead of knowledge state.
3In order not to overload the notation we omit the time step n when it does not cause

confusion.

550

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.



3 Action Selection Policies

In our study, we compared 8 action selection policies. The first 5 are often
used in reinforcement learning, i.e. ǫ-greedy and softmax exploration, pursuit,
reinforcement comparison, and interval esitmation (IE). For more details about
these policies, we refer to [7] for interval estimation and to [12] for the rest.
We also included 3 lesser known ones described next: upper confidence bound,
Gittins index, and knowledge gradient policies.

3.1 Upper Confidence Bound Policy (UCB)

The upper confidence bound (or UCB) policy was proposed in [1]. Actually, it is
a family of policies of which we consider two members: UCB1 and UCB1-Tuned.

The UCB1 policy first plays each arm once. From then on, at each time
step n it selects the arm j that maximizes the function µ̂i +

√

2 lnn/ni. The
authors also introduced UCB1-Tuned that apart from the estimated means µ̂i,
also takes the estimated variances ˆ̄σ2

i of these means into account. Here, the
arm is selected according to

j = argmax
i=1,··· ,K

µ̂i +

√

lnn

ni

min{
1

4
, Vi(ni)} where Vi(n) = ˆ̄σ2

i +

√

2 lnn

ni

In [1] it is shown that UCB1 is optimal in terms of regret. For UCB1-Tuned
no such theoretical guarantees exist although according to the authors it per-
forms better than UCB1 in practice. So, we also included it in our comparison.

3.2 Gittins Index Policy

The famous Gittins index theorem [5] states that for the multi-armed bandit
problem with geometric discount and independent arms, it is optimal at each
time step to select the arm with the highest index νi which depends on the
number of times ni that arm has been selected.

Unfortunately, the Gittins index is hard to compute but in case of rewards
drawn from the standard4 normal distribution N(0, 1), tables exist and for any
other normal distribution N(µ, σ), the corresponding Gittins index can be com-
puted from these tables [5, 9]. Also, good approximations for the upper and
lower bound for the Gittins index exist, e.g. Brezzi and Lai [3] propose for dis-

crete time problems the approximation Γ(n) = PG

√
n
where PG is a parameter to

be tuned. For more information on the theory and different proofs of the Gittins
index theorem, we refer to [5].

3.3 The Knowledge Gradient Policy (KG)

The knowledge gradient policy (or KG) was first introduced in Gupta and Mi-
escke [6] and further analyzed by Frazier and Powell for online learning [4, 9],

4The standard normal distribution N(0, 1) has mean µ = 0 and variance σ = 1.
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who also proposed the name knowledge gradient. KG chooses the action i with
the largest value of V KG(i) and it prefers those actions about which compar-
atively little is known. These actions are the ones whose distributions around
the estimate mean µ̂i have larger standard deviations ˆ̄σi. Thus, KG prefers an
action i over its alternatives if its confidence in the estimate mean µ̂i is low. For
the multi-armed bandit problem, which is an online problem, this policy selects
the next action according to

JKG(n) = argmax
i

µ̂i+(n−ni)V
KG(i) where V KG(i) = ˆ̄σi f(−|

µ̂i −maxj 6=iµ̂j

ˆ̄σi

|)

Here, f(ζ) = ζΦ(ζ) + φ(ζ) where Φ(ζ) and φ(ζ) are the cumulative distribution
and the density of the standard normal density, respectively.

4 Empirical Comparison

The experimental setup is as follows. The number of arms was varied as follows:
K = 2, 5, 10, 50. The rewards of theK arms are all distributed normally with the
mean rewards µi generated according to a uniform distribution over the closed
interval [0, 1] but each arm has the same variance σ. The means were sorted
from high to low so that the first arm was always the best while the last one the
worst, i.e. µ1 > µ2 > · · · > µK . We experimented with standard deviations5

σ = 0.01, 0.1, 1.0. The smaller σ, the easier the problem. We also considered the
case where arms have different but fixed σi. The σi are generated from a uniform
distribution over the closed interval [0, 1]. Many of the action selection policies
described in Section 3 have tunable parameters which are optimized using cross-
validation and we compare policies with their optimal parameter values. As
in [8], we used the performance measures 1) Total regret accumulated over the

experiment, 2) Regret as a function of time, and, 3) Percentage of plays in which

the optimal arm is pulled, but we only show results for the last one.

4.1 Comparison of Action Selection Policies

Our results concerning the 5 first action selection policies described in Section 3
are consistent with the ones reported in [8]. Most importantly and quite surpris-
ingly the simplest policies, ǫ-greedy and softmax, are almost always better than
the rest with softmax slightly better than ǫ-greedy. Only for a small number of
arms (K = 2, 5) and high standard deviation, i.e. σ = 1, is UCB1-Tuned doing
better. Since this policy takes also the variance into account, cf. Subsection 3.1,
this should not come as a surprise. The simple pursuit policy is the worst.

The second conclusion is that the performance of a policy very much depends
on the parameter values used. So, these values should be optimized first before
one compares them with other policies.

Next, we compared the performance of the Gittins index, interval estimation,
and knowledge gradient policies with the best action selection policy from [8] for

5The standard deviation squared equals the variance.
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each combination of armsK and standard deviations σ. The results are shown in
Figure 1 for the Percentage of optimal action performance measure. For the two
other ones, the results are similar but they are not shown here because of lack
of space. Before we applied these new policies we tuned optimally the involved
parameter, i.e. PG for the Gittins index and Zα for the interval estimation
policy. An advantage of the knowledge gradient policy is that no parameters
have to be tuned.

(a) K=2, σ ∈ I (b) K=5, σ = 1

(c) K=10, σ ∈ I (d) K=50, σ = 1

Fig. 1: Comparison of action selection policies on a test set of bandit problems,
cf. text for explanation.

In Figure 1, we show the comparison of the Gittins index, IE, and KG
policies with the best one from [8]. In subfigure (a), K=2, σ in the interval
I = [0, 1], the best policy is KG. In subfigure (b), K=5, σ = 1, the best policy is
IE. In the subfigure (c), K=10, σ ∈ I, the best policy isKG, and in the subfigure
(d), K=50, σ = 1, the best policy is KG. We have done the comparison on 2,
5, 10, and 50-armed bandit problems for a range of standard deviations and the
obtained results are similar. The most important observations of this empirical
comparison can be summarized as follows:
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For K = 2 as long as the variances are fixed the 3 new policies perform
more or less the same and outcompete the best one in the study of Kuleshov
and Precup [8] but when the arms have different variances Gittins index is much
worse than the others. This is quite surprising and so far we do not have an
explanation for that. For K = 5, 10, the results are more or less the same.
However, for many arms and/or high variance of the rewards and arms with
different variances, KG is outperforming the rest.

The main conclusion of this study is quiet simple. The knowledge gradient

policy (KG) is in all circumstances always at least as good as the most com-
petitive new policies. In case of many arms or high variance, KG is the clear
winner. Moreover, its computational complexity is low and no parameters have
to be tuned.
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