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Abstract. This paper presents a state estimation approach for reinforce-
ment learning (RL) of a partially observable Markov decision process. It is
based on a special recurrent neural network architecture, the Markov deci-
sion process extraction network with shortcuts (MPEN-S). In contrast to
previous work regarding this topic, we address the problem of long-term de-
pendencies, which cause major problems in many real-world applications.
The architecture is designed to model the reward-relevant dynamics of an
environment and is capable to condense large sets of continuous observ-
ables to a compact Markovian state representation. The resulting estimate
can be used as input for RL methods that assume the underlying system
to be a Markov decision process. Although the approach was developed
with RL in mind, it is also useful for general prediction tasks.

1 Introduction

Reinforcement learning (RL) [1] is the machine learning approach to the op-
timal control problem. Instead of designing the control strategy, RL learns it
from actual observations of the system to be controlled. Combined with pow-
erful function approximators like neural networks, impressive results could be
achieved [2–4]. The system is usually assumed to be a Markov decision process
(MDP) M := (S, A, P , R), where S and A denote the state and action spaces,
respectively, P : S × A × S �→ [0, 1] the transition probabilities, i.e., the prob-
ability of entering a successor state s′ by executing an action a in state s, and
R : S × A × S �→ � the reward function assigning a transition its immediate
utility. The aim of RL is to derive a policy π : S �→ A mapping each state to an
action that maximizes the return, i.e., the sum of (discounted) future rewards.
A central characteristic of an MDP is the Markov property, which states that
the probability of reaching a certain successor state st+1 depends on the current
state st and action at only.
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However, in many real-world control problems the current state is not fully
observable. Instead, only an observation zt ∈ Z can be used as source of in-
formation about the true current state st, rendering the MDP into a partially
observable Markov decision process (POMDP) M ′ := (S, Z, A, P , R, O). In ad-
dition to the components of an MDP, a POMDP contains an observation space
Z and an (usually unknown) observation function O : S × A �→ Z, describing
the mapping from state-action pairs to observations.

The paper introduces the Markov decision process extraction network with
shortcuts (MPEN-S), a special neural architecture that aims at constructing a
high-quality estimate of the current Markovian state st. Like previous recurrent
neural network approaches [5,6], it reconstructs a Markovian state representation
in a designated hidden layer. This reconstruction can then be used as input to
RL methods relying on the Markov property.

While previous work [5,6] always assumed that the estimation quality of neu-
ral networks is not affected by long-term dependencies, experiments have shown
a significant loss in estimation quality. The MPEN-S overcomes these restric-
tions by introducing shortcut connections. Other approaches also addressing the
problem of long-term dependencies, however focusing on prediction performance
only, include the NARX topology [7], the LSTM approach by Hochreiter [8], and
the EBPTT by Boné [9].

2 State Estimation from a History of Observations

Most state-estimation approaches rely on Takens’s theorem [10], which states
that a sufficient number of past time slices contain all information necessary to
estimate a Markovian state. This can be accomplished by simply accumulating
a sufficient number of past time slices into a single state. However, in most cases
the number of variables cause this näıve approach to be impractical. To overcome
this problem, a neural bottleneck network (e.g., [11]) can be used to condense
relevant information into a compact state representation with decorrelated state
variables. To account for the time invariance of the dynamics, the bottleneck
approach can further be improved by using a recurrent neural network, which
avoids overfitting by reducing the number of free parameters. Recurrent state
estimators show remarkable performance in various industrial applications [2].

Despite the advantages of recurrent neural networks, there have been con-
cerns regarding their capability to model long-term dependencies [12]. In a sys-
tem exhibiting long-term dependencies the system’s output at time T is depen-
dent on the input at time t � T [7]. The problem was discovered by Mozer [13],
who found recurrent networks to be unable to capture global effects in classical
music. The main reason for this effect are vanishing gradients in gradient-based
learning methods [7,14]. Long-term dependencies occur in many time series, for
instance from technical systems or financial data.
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Fig. 1: The Markov decision process extraction network with shortcuts
(MPEN-S) consists of a past (left) and a future (right) network part. The input
variables are split into two groups: actions at are controllable by the RL agent,
zt denote observable variables from the environment. Only the future network
part has outputs rt (rewards). State transitions are modeled by si

t as well as st.
Note that all weight matrices in the past (A, . . . , E) are different from future
matrices (G, H, J, K, L).

3 Topology of the MPEN-S

The MPEN-S is a neural topology based on the MPEN [6]. The MPEN is an
unfolded recurrent neural network, modified to suit the requirements of an RL
problem, e.g., using rewards as targets to capture the reward-relevant dynamics
and different weight matrices for the past and future part of the network. For
the MPEN-S we introduce shortcuts, defining connections of length n of non-
adjacent hidden states st (fig. 1). In contrast to the NARX approach, there
are no connections of length n − 1, n − 2, . . . As shown in fig. 1, the shortcut
connections do not jump over the current state s0, enforcing the encoding of
all future-relevant information in s0. The state estimate is represented by the
activation values of s0.

For selecting an adequate shortcut length n, a heuristic was developed. Since
the severity of the vanishing-gradient problem is correlated with the number
of steps that information has to be forwarded within the network, we sug-
gest to choose the value n that minimizes the total number of steps infor-
mation has to travel from any state in the past to the current state s0, i.e.,∑p

i=1 steps(s0, s−i, n) →n min, where steps(s0, s−i, n) gives the minimum num-
ber of steps to travel from s−i to s0, including possible shortcuts. For ex-
ample, if n = 2, steps(s0, s−1) = 1, steps(s0, s−2) = 1, steps(s0, s−3) = 2,
steps(s0, s−4) = 2. The only information required for this heuristic is the maxi-
mum number of past time slices that are assumed to influence the current state.
Fig. 2 shows results from experiments with different shortcut lengths indicating
that the heuristic leads to reasonable results.

4 Experiments and Results

To demonstrate the capabilities of the MPEN-S two benchmarks are used, a
sequence of random numbers as well as a gas turbine simulation. We compare
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Fig. 2: Results from experiments with different shortcut lengths and a past of
p = 20. (a) shows the sum

∑p
i=1 steps(s0, s−i, n) of a network without shortcuts

and networks with shortcuts of different lengths (n ∈ {4, 5, 6} minimizes the
sum). (b) shows the validation errors of these networks for the random numbers
experiment (Sec. 4). The correlation between the sum of steps and the validation
error is obvious.

the MPEN-S with shortcuts of length n = 4 to the MPEN, where n = 4 was
chosen according to the heuristic. For each architecture and benchmark, we
learn 10 networks using online backpropagation with a learning rate of 0.001 on
10,000 observations, of which 30% are used for validation. Evaluation is based
on a further set of the same size but without noise. To judge the quality of the
state estimate, represented by the activation values in s0, the estimated states
are used as inputs for a feedforward neural network (two hidden layers with 150
neurons each) whose targets are the true Markovian states of the benchmark ap-
plications. In the best case, the estimated states include all relevant information
and consequently allow for a perfect mapping to the true Markovian states, i.e.,
the correlation between the target and output is 1.

4.1 Random Numbers Experiment

As a first experiment, sequences of equally distributed random numbers xi ∈
[0, 1] were used. The network with a past and a future horizon of i steps received
a sequence xt, xt+1, . . . , xt+i as inputs in the past part of the network. The
sequence was then used as targets for the future part of the network, introducing
a delay between input and corresponding output. This way, the network has to
output an input given at time step t at time step t + i to minimize its error.
In addition, equally distributed noise e ∈ [−0.05, 0.05] was added to the target
values for training. The goal of the state estimation for the random numbers
problem is to encode information about the past i random numbers.

4.2 Gas Turbine Simulation

To demonstrate the capabilities of the presented approach on a problem similar
to the real-world application of our interest, we introduce a gas turbine sim-
ulation. The simulation provides a controllable variable pilot that affects the
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architecture experiment delay correlation validation error

MPEN
random numbers 60 0.4 0.9

gas turbine 30 0.988 0.0160

MPEN-S
random numbers 60 0.99 0.012

gas turbine 30 0.995 0.0058

Table 1: Comparison of the MPEN and the MPEN-S in terms of validation error
(MSE) as well as correlation between true and estimated Markovian state.

emissions and the resulting humming of the turbine. The goal of any strat-
egy is to minimize both to meet emission requirements as well as avoid critical
humming, which is reflected in the reward function. While humming reacts in-
stantaneously, the emissions, like in real world, have a long delay and a defined
blur over several steps in time. Each step, the simulator provides observations
about its current state. The only additional information for the state estimation
model is the maximal expected delay d of the simulation. The goal of the state
estimator is to encode all information about the past d steps.

4.3 Results

Fig. 3 illustrates the correlation of the estimated and true Markovian states
of the random numbers experiment ((a) and (b)) and the results of the gas
turbine simulation experiment ((c) and (d)). Both benchmark results indicate
that the MPEN approach is capable of estimating the Markovian states well for
small delays. For longer dependencies however, the approximation quality drops
significantly, while the MPEN-S can maintain its performance. Table 1 shows
the average correlation and validation errors of all state variables. The numbers
show that the MPEN-S improves on the MPEN both in reconstruction quality
of the Markovian state (resulting in a better correlation) as well as raw forecast
performance (lower validation error). The validation error is a good indicator
for estimation quality, which is especially relevant for real-world applications.

5 Conclusion

A recurrent neural topology for state estimation in RL accounting for long-term
effects, the MPEN-S, was introduced. Results on two benchmark applications
indicate a significant improvement over previous approaches, especially for state
variables with long-term delays. This is reflected in a superior validation error of
the forecast as well as an improved estimation quality, especially for state vari-
ables dependent on highly delayed observables. Another important conclusion
to draw from our experiments is the correlation between the validation error
and estimation quality. This information is of high value, since in any real-world
application one can only rely on the measure of the validation error.
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Fig. 3: Average correlations of true and estimated Markovian state. A higher
variable index indicates a variable closer to the present. (a) and (b) show the
estimation quality for the random numbers problem with a delay of 60 steps.
(c) and (d) illustrate the estimation quality for the gas turbine simulation with
a delay of 30 steps.
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