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Abstract. We generalize the formulation of associative reservoir com-
puting networks to multiple input modalities and demonstrate applications
in image and audio processing scenarios. Robust association with reser-
voir networks requires to cope with potential error amplification of output
feedback dynamics and to handle differently sized input and output modal-
ities. We propose a dendritic neuron model in combination with a modified
reservoir regularization technique to address both issues.

1 Introduction

In the recent years, the idea of combining a nonlinear and high-dimensional ran-
dom projection with a linear read-out layer has become popular under the notion
of Reservoir Computing (RC, [1]) and Extreme Learning Machines (ELM, [2]).
Standard RC networks and ELMs implement input-output mappings, where the
input-driven representation in the hidden layer is utilized for a simple, linear
read-out mapping. Associative reservoir computing networks [3, 2] extend this
feed-forward network configuration to bidirectional information retrieval sys-
tems. In this paper, we generalize these previous ideas to a multi-modal formu-
lation under the notion of Hidden State Association (HSA), where the hidden
state holds a shared representation of multiple input modalities. The scheme
can be applied in case of attractor- as well as transient-based computation, e.g.
association of static patterns or sequence transduction.

Association in these networks, however, requires feedback connections from
output neurons to the hidden layer which can potentially lead to error ampli-
fication of the retrieval dynamics [4]. Several techniques have been proposed
to cope with output feedback dynamics in RC, e.g. [1, 5, 4]. In the context
of bidirectional association, it is moreover crucial to control or to balance the
contributions of inputs to the hidden state. In particular for very heterogeneous
input modalities with different dimensions or diverse energy spectra, it is im-
portant that the network can still be driven by either input or output neurons
to implement an effective bidirectional mapping. For these reasons, an explicit
and also parameterized weighting of each modality is desirable.

In this paper, we complement the reservoir regularization approach intro-
duced in [4] with an additional concept to balance contributions of several driv-
ing input modalities. The balancing is integrated in the regularization process
such that both can be accomplished in one step. We apply the proposed method
to image and audio processing scenarios.
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Fig. 1: Left: HSA network with multiple input modalities x(m). Right: Formal
neuron model with dendritic tree structure and weighting factors g(m).

2 Hidden State Association (HSA)

We consider network architectures as depicted in Fig. 1 (left) comprising a hid-
den layer of nonlinear neurons h = σ(a) ∈ �

R, which is driven by M input

modalities x(m) ∈ �D(m)

with random connection strength W
(m)
inp . Thereby, the

nonlinear activation functions σ(·) are applied component-wise. Throughout
this contribution we use σ = tanh. The network activities a and reconstructed
inputs x̂(m) are computed according to

a(k) = W
(0)
inph(k−1) +

M∑
m=1

W
(m)
inp x

(m)(k) (1)

x̂(m)(k) = W
(m)
out h(k) ∀m = 1, . . . ,M. (2)

Note that this formulation also covers recurrent hidden layers, i.e. reservoirs, by

optionally setting W
(0)
inp �= 0 and x(0)(k) = h(k − 1). During network exploita-

tion, the network is driven by given modalities x(m) while the modality to be
retrieved is iterated in a closed loop by feeding estimated values x̂(n) back into
the hidden layer. In case of static pattern association, these feedback dynamics
are iterated until convergence of the hidden state for each input sample.

Learning is restricted to the read-out connections W
(m)
out . First, the network

is teacher-forced by the training samples and its hidden states are collected in
the matrix H. Then, the read-out weights are computed by linear regression

(W
(m)
out )

T =
(
HTH+ α(m)

�

)−1

HTX(m) ∀m = 1, . . . ,M, (3)

where X(m) are the training samples x(m) collected in a matrix and α(m) is a
regularization parameter for each modality, respectively.

3 Weight Regularization with Activity Distribution

We control the contribution of each modality to the hidden state activity a
by adopting the reservoir regularization approach from [4]. The idea is to re-
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compute the weights W
(m)
inp such that they have a smaller norm but still im-

plement the same input-to-state mapping. This reduces the overall gain of the
feedback loops during network exploitation and gains stability of the system [4].
In addition, each modality shall contribute with a prescribed strength to the
hidden state activity. We define the target activity to split into a weighted sum

a(k) =

M∑
m=0

g(m) a(k) with
M∑

m=0

g(m) = 1.

The regularized network weights per modality are then given by

(Ŵ
(m)
inp )

T = g(m)
(
(X(m))TX(m) + β(m)

�

)−1

(X(m))TA ∀m = 0, . . . ,M.

The contribution of each modality m to the network’s activation can now be
controlled by g(m), e.g. g(m) = 1/(M+1) for a uniform balancing. Regularization
of the corresponding input weights is parameterized by β(m). This weighted
contribution of input modalities models the dendritic tree structure of neurons
(cf. Fig. 1 (right)).

4 Balancing Contributions for Robust Association

In the following, the scalability of the proposed approach is demonstrated in
two dimensionality reducing scenarios. The idea is to associate high dimen-
sional ’raw’ data with a low-dimensional representation, thereby representing
the reduction and the reconstruction mapping in a single network. Balancing
contributions of the two input modalities, namely the original data x(1) and its
low-dimensional representation x(2), is particularly important in order to com-
pensate the strong discrepancy in size of the input modalities. In our experiments

we choose a uniform weighting g(1) = g(2) = 0.5, where W
(0)
inp ≡ 0.

Learning to embed and reconstruct handwritten digits
First, HSA networks are trained to embed handwritten digits into a plane and to
reconstruct digits from their low-dimensional representation. This contributes to
an upcoming thread of ideas that considers neighborhood-preserving embedding
functions [6, 7]. This approach is appealing because embedding new data points
after learning of the function does not require to rerun the embedding algorithm
with the additional data points. Additionally, the reconstruction of data in the
original space by ”navigating” through the embedding space is enabled.

We consider images of handwritten digits from the MNIST data set [8]. We
embed the data into the two-dimensional plane by t-Stochastic Neighbor Em-
bedding (t-SNE) [6] in order to generate training data pairs (x(1),x(2)) with a
two-dimensional embedding vector x(2) for each image x(1) ∈ �784.

We train 100 independently initialized HSA networks with R = 400 hidden
neurons to learn the embedding projection and the inverse mapping. The input

weights W
(m)
inp are initialized in [−1/D(m), 1/D(m)], where D(m) denotes the

dimension of the respective input modality. For training, a randomly chosen
subset of the data comprising 75% of the 2000 embedded images are chosen.
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Fig. 2: Left: Embedding and generation of digits by the trained associative
network: Input images x(1) are plotted at estimated positions x̂(2). Right: Re-
constructed images x̂(1) are plotted at embedding positions x(1) of t-SNE.

The remaining 500 samples are used to evaluate the generalization abilities of
the learned mapping. Read-out learning is conducted with α(1) = α(2) = 0.1
and the input weights are regularized by β(1) = 0.1 and β(2) = 0.01, which all
are found by manual tuning.

We first consider the embedding projection from the image space to the
plane. The estimated projections for a subset of the input images are shown in
Fig. 2 (left). The embedding shows a decent and smooth structure with similar
inputs at similar positions in the embedding space. To access the network perfor-
mance quantitatively, we compute the dimension-normalized mean square error

NMSE(m) =
1

K

K∑
k=1

1

D(m)
||x(m)

k − x̂
(m)
k ||2, (4)

where K is the number of samples. In this scenario x
(m)
k with m = 2 are the

embeddings according to t-SNE and x̂
(m)
k the approximated embedding by the

HSA network. The error statistics for training and test sets of the HSA embed-
dings with respect to the embedding generated by t-SNE are displayed in Tab. 1
indicating robust learning of the output-feedback-driven network dynamics.

The inverse mapping implemented by the network maps two-dimensional
coordinates x(2) to images x̂(1). Fig. 2 (right) shows such reconstructions of
images for a subset of the embedded data points. The characteristics of all ten
digits are reproduced well and variations of the digit shape and orientation are
also associated with neighboring positions in the embedding space. The average
reconstruction errors in Tab. 1 show a similar approximation capability of the
networks for the backward data reconstruction in comparison to the forward
embedding on the test sets.
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Scenario Set Embedding Reconstruction

MNIST
Train 0.012± 3.6 · 10−4 0.044± 7.1 · 10−4

Test 0.047± 4.0 · 10−3 0.043± 2.5 · 10−4

MFCC
Train 0.061± 1.9 · 10−3 5.84 · 10−4 ± 9 · 10−7

Test 0.070± 2.8 · 10−3 6.81 · 10−4 ± 1 · 10−6

Tab. 1: Normalized mean square errors (4) and standard deviations.

Learning to compress and decompress speech signals
In a second scenario, we apply HSA to encode and decode speech signals to
and from a compact representation, implementing a continuous sequence trans-
duction. For speech recognition, most state-of-the-art methods utilize the Mel
Frequency Cepstral Coefficients (MFCCs). However, for speech generation and
uncompressing compressed speech signals, it is desirable to also reconstruct a
full power spectrum from its MFCC representation. The HSA approach enables
this bi-directional sequence transduction in one network.

We process the German utterance “Ich möchte heute von München nach
Frankfurt fahren.“ spoken by 58 female and male speakers at 16 kHz [9]. We
calculate the normalized power spectrum and the corresponding 13 MFCCs each
10 ms with a window size of 25 ms, i.e. x(1) ∈ �

256 and x(2) ∈ �
13. We use

networks with 500 hidden neurons. The input weights are regularized with
β(1) = β(2) = 0.1 and the output weights with α(1) = 0.1 and α(2) = 0.01.
Again, these parameters are tuned manually. All other learning and network
parameters are set as above. We train 10 independently initialized networks in a
5-fold repeated random cross-validation. The inter-subject generalization ability
of the networks is evaluated by collecting 44 (≈ 75%) randomly chosen speakers
for training and 14 for testing in each fold.

Fig. 3 shows the qualitative feature extraction abilities of the approach, where
the extracted MFFCs x̂(2) (top right), estimated on the basis of the original
power spectrogram x(1) (top center) of an exemplary speech frame in a test
utterance (top left), are compared to the target features x(2) (bottom right).
Both the characteristics of the 12 coefficients and the value of the log-energy of
the frame is well approximated.

The quality of the inverse mapping, i.e. to reconstruct a full power spectrum
from the MFCCs, is also revealed by Fig. 3. Given the low-dimensional MFCC
representation x(2) of a frame (bottom right), the network is able to estimate a
power spectrogram x̂(1) (bottom center) qualitatively covering the characteristics
of the original spectrogram (top center). Mapping the reconstructed spectra back
to the time domain reconstructs a full utterance (bottom left)) very similar to
the original speech signal. In this way, entire speech signals can be reconstructed
from a very low-dimensional representation.

The entire evaluation results are collected in Tab. 1 and show competitive
dimension-normalized mean square errors for both sequence transduction direc-
tions which underlines the balancing effect of the proposed method.
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Time [ms]Time [ms]Time [ms]Time [ms]
      

Frequency [Hz]
1 2 3 4 5 6 7 8 9 10 11 12 13

MFCCs

Time [ms]Time [ms]Time [ms]Time [ms]
      

Frequency [Hz]
1 2 3 4 5 6 7 8 9 10 11 12 13

MFCCs

Fig. 3: Top left: original utterance with a highlighted frame. Top center: power
spectrum of that frame. Top right: extracted MFFCs by the HSA network.
Bottom right: target MFCCs of the highlighted frame. Bottom center: recon-
struction of the frame’s power spectrum by the network. Bottom left: generated
speech signal based on the reconstructed power spectrograms.

5 Conclusion

The applications show that association of unequally sized modalities is possi-
ble with HSA and the balancing of contributions. We conclude from the small
error variances in Tab. 1 that bidirectional mappings can be robustly learned
in HSA networks. That is, error amplification of the feedback dynamics is pre-
vented by applying regularization of the hidden layer in combination with the
balanced contributions of the input modalities to the network activity. Balancing
of contributions to the hidden states assures that the regularized model is still
responsive to inputs or outputs, i.e. can be driven by the respective modality,
which is of major importance for bidirectional association.
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