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Abstract. Anomaly detection on sequential data is common in many
domains such as fraud detection for credit cards, intrusion detection for
cyber-security or military surveillance. This paper addresses a new CUSUM-
like method for change point detection on curves sequences in a context
of preventive maintenance of transit buses door systems. The proposed
approach is derived from a specific generative modeling of curves. The
system is considered out of control when the parameters of the curves
density change. Experimental studies performed on realistic world data
demonstrate the promising behavior of the proposed method.

1 Introduction

This study is motivated by the predictive maintenance of pneumatic doors in
transit buses. Such a task has led us to detect changes on a sequence of complex
observations. In this context, each observation is a multidimensional trajec-
tory (or curve) representing the couple (air pressure of actuators, door position)
during an opening/closing cycle of a door.

Change point detection on a sequence of observations is generally formulated
as a sequential hypothesis testing problem consisting in detecting earlier the
occurrence of a change with a low false alarm rate [1]. A large amount of
detection rules has been proposed in the literature [1], [2] to address this issue
but these approaches are very often based on multivariate sequential data. This
paper deals with the problem of on-line change detection on a sequential data
where each observation consists in a multivariate curve. For this purpose, a
generative model inspired from the Hidden Process Regression Model [3] has
been used to represent multivariate curves. Based on the resulting curves density,
an on-line CUSUM-like detection approach is derived.

The next section gives a brief review of the CUSUM and Generalized Like-
lihood Ratio (GLR) detection algorithms. In the third section, we describe the
generative model used for the modeling of multivariate curves and the sequen-
tial strategy proposed to detect changes from curves sequences. An experiment
on both synthetic and real data related to the monitoring of pneumatic door
systems is detailed in section 4.

2 Review of CUSUM-like algorithms for multivariate data

Let us suppose that data are multivariate observations x1, ..., Xy, .. . sequentially
received. The classical CUSUM algorithm [2] consists in deciding about which
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of the following hypotheses to choose when the parameters 6y and 8, are known:

(Ho) xi “p(xisf0) Vi=1,...,t
(Hy) Xi%ip(xi;eo) Vi=1,...,p—1 (1)
xiiLdp(xi;Gl) Vi=np,...,t
where p is the change time point. The detection statistic is then written as:
<p(x17 ey Xp—1500) X D(Xp, - -+, Xe5 91)> ~ nax log p(xs; 91)'
p(x1,...,%¢;60) 2<p<t p p(xi;600)

g+ = max log
2<p<t

(2)
The change time t4 (or alarm time) is defined by: t4 = inf {t D g > h}. The
optimality of this detection rule has been proved in both the asymptotic case [4]
and the non-asymptotic case [5].

The Generalized Likelihood Ratio (GLR) test [1] can be considered when the
parameter 61, after change, is unknown. In contrast to the CUSUM detection
statistic (eq. (2)) that can be recursively written, the GLR rule does not have a
recursive formulation [1].

This paper considers that 6y and 6, are unknown. In a perspective of online
change-point detection from a curve sequence, the next section begins with the
specification of a probability density function for multivariate curves.

3 Sequential change point detection approach for multidi-
mensional curves

3.1 Generic regression model for multivariate curves

The curve modeling approach described here is inspired from the Hidden Process
Regression Model initiated in [3]. Originally, this model was dedicated to the
description of mono-dimensional curves presenting some changes in regimes. As
the multidimensional curves (related to the door opening/closing cycles) studied
in this paper are themselves subject to changes in their regimes, we propose
an extension of the latter model to deal with multidimensional curves. Let
(x1,...,%¢) be a curves sequence, where x; = (51, ..., %) and z;; € R4, d > 1.
Each trajectory x; is associated with a time vector t = (t1,...,tn), where
t1 < ... <tp. Moreover, we assume that at each time point ¢;, the variable x;;
follows one of K polynomial regression models of order r. That is to say z;; is
generated by:

zij =B, Tj+e€; (3)
where €;; ~ N(0,X.,,) is a d-dimensional Gaussian noise with covariance ma-
trix 3., matrix B, is the d X (r + 1) polynomial coefficients and T; =
(1, ti,.. ., (tj)r)T is the covariate vector. The difference between this extension
and the original model for monodimensional curves [3] remains in the specifica-
tion of the parameter ﬂzl_j which is a matrix in our situation.

The hidden variable z;; (Vi = 1,...,¢t and Vj = 1,...,m) is assumed to
be generated independently by a multinomial distribution M(1,m(¢;;a),...,
7Tk (tj;a)) where m(t; @) is a logistic function of time. The logistic transforma-
tion allows to model dynamical changes between segments with flexibility.
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The parameter 0 = (a, B, Br, X1, ey EK) of this model is estimated by

maximizing the log-likelihood through the Expectation-Maximization algorithm
[6]. The pseudo-code of this method is provided in Algorithm 1. As in the uni-
variate case, parameter a is updated through a multi-class Iterative Reweighted
Least Squares (IRLS) algorithm [7]. Therefore, the algorithm 1 is the multidi-
mensional version of the EM algorithm introduced by Chamroukhi [3].

Algorithm 1: Pseudo-code for Multivariate RHLP. EM(x, r, K)

Input: Observation matrix x of size t, degree r of the polynomial, number K of
segments for each curve and eventually 6

g+ 0 // Random initialization of 6} if not provided

=

N

while Non convergence test do
3 for (i,5,k) € {1,...,¢} x{1,...,m} x{1,...,K} do

Tk (tj; a<q)) ~N(mij; 5k(q) - Ty, Ek<q>>

4 e @ // E-step
S m(tisa®) 'N<13ij§5l(q)’ Ty, 21@))
5 m K ¢ // M-step
6 al®tD)  arg mgxzz Zﬁjkm) log x (t;; @) // IRLS
j=1 k=1 \i=1

7 for ke {l,...,K} do

8 (Bk("“>)T<—[§: (i: Tijé")> T; TjT} B li T, (j: Tijlc(q>$ig> 1

j=1 \i=1 i=1
22:1 Z;nzl Tijk(q> [mij _ /Bk<q>Tj:| [wij — Bka]}T

S k@

9 2k(q+1) —

10

L g q+1

Output: Estimated model parameter 6
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Fig. 1: Density estimation of ten defect-free bivariate curves (left), projection by

dimension (middle) and logistic probabilities (right) during a closing motion.

The

degree of polynomial regression is set to 4 and the number of regimes is set to 3,
corresponding to 3 physical operating steps.
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3.2 On-line change-point detection strategy

Applying the CUSUM and GLR off-line rule (section 2) becomes rapidly inef-
ficient regarding computational and memory requirements. To overcome these
limitations, we propose a new on-line detection strategy which sequentially uses
windows of size W [2]. Let us assume that the last change point has been
detected at time point t4 and that, up to time ¢ > ¢4, no change has been de-
tected. The proposed strategy then consists in detecting the change point into
the time interval ¢ < p <t 4+ W instead of considering the overall time interval
1 < p <t+W. This particular strategy only requires the computation of O(W)
likelihood ratios instead of O(t+ W) ratios for the off-line version. The detection
is performed by computing:

. Xp_1:60) X .0
gi+w = max_ log P(Xts- s Xp-1i60) p(XP’A Xt 61) )
t<pst+W p(XtA7 sy Xt W 00)

The computation of this statistic requires the evaluation, for each t <p < t+W,
of the log likelihood ratio where the ML estimates 6y and 6; are computed by
running the EM algorithm respectively on the data sets {x;,,...,x,—1} and
{Xp, ..., Xxyw}. These estimations are accelerated by initializing the EM algo-

rithm with the parameters 50 and 51 computed in the previous window step
it

for p = t. It should be noticed that the initial parameter 0;7” is computed by

running EM on £y healthy curves.This procedure is described in algorithm 2.

Algorithm 2: Pseudo-code for the proposed detection method.

Input: Sequential curves (x1,Xa,...), number ¢y of healthy curves, local
window size W, degree r of polynomial, number K of segments for each
curve, detection threshold h, where « is a FA rate given by the user

1ta 1
2 itnf? ta+to—1 // Initialization
360 <« EM((xtA, ceyXt), T, K) // Null hypothesis (Ho)
4 while there are new data of size W do
5| gew < max 2 log p(xi301) — log p(xi; 60)
6 t* < argmax Z::;V logp(xi;al) — logp(xi;go)
t<p<t+W o
50 — EM((xty,---,%Xp-1), 1, K, 58””
4 where N ~init
6, «— EM((xp, ... ,Xeqw), 1, K, 0,

8 if gi+w < ho then
~init ~init o~ o~
o L ©,",6,") < (80.6)

10 t—t+W

11 else

12 ta+t*

13 Restart the initialization

Output: Estimated change time(s) ta
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4 Experimental studies

Opening and closing operations have a similar behavior ; in this article, we only
report results related to door closing operations. The dataset has been recorded
in July 2011 on a 18-meters articulated bus. Two variables were recorded: the
pressure inside door pneumatic actuators and the door position. A sampling
frequency of 100Hz was adopted. The resulting curves length was m = 204.

The number of curves needed to learn ggnlt was set to 10 and the window
size W was set to 5 curves. We have observed that the window size does not
affect the detection quality but can slow down the process if too large.

Relevant hyperparameters embedded in the density estimation model, are
determined using a physical prior i.e. K = 3, which corresponds to the three
steps during the door operation (Fig. 1); the degree r of polynomial regression
model was experimentally set to 4.

The detection threshold, based on « (the expected false alarm rate provided
by the user), is estimated as follows: first, the multivariate RHLP is used to
learn a parameter vector 8y on a set of healthy closing operation curves ; then,
curves sequences of size 15000 are generated from distribution p(x;; 6o); finally,
the threshold is formed by the (1 — «) confidence interval of the test statistic.
In this article, a was set to 0.1, 0.01 and 0.001.

Two performance metrics were used to evaluate the proposed method: the
false alarm rate (FAR) and the average detection delay (ADD) that is to say
the delay to detect an effective degraded curve after the change point. Note
that FAR is computed on the healthy curves. Each curves sequence consists of
10250 curves including 10000 defect-free curves and 250 curves corresponding
to a door blocking damage.
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Fig. 2: log(a) VS log(FAR) (left). And impact of the noise level on detection delay
(right). Each value of log(FAR) and ADD is an average over 10 different sequences.

Figure 2 (left) displays the logarithm of FAR as a function of the logarithm
of a. 'We observe that FAR indicator is stable for the different values of noise
level. In fact, similar values between FAR and o means that the detection
threshold has been correctly estimated. Figure 2 (right) shows the behavior
of ADD in relation with the noise level which is a multiplicative factor of the
variance Xj. It can be seen that ADD increases with the noise level and that no
change is detected when the noise level is too large (distribution before change
and distribution after change are overlapping).
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Fig. 3: Example of detection on closing curves (« is set to 0.001 and noise level is set
to 2). 200 in-control observations are in blue and 100 anomalies in red (left); statistic
gt is in blue, estimated detection threshold is in red and alarm is the red circle (right).

5 Conclusion

In this paper, we have presented a sequential method to detect anomalies in
a curves sequence. The proposed method uses a CUSUM-like test based on
densities defined on the curves space. This approach is suitable for sudden
changes, like in operating system breakdown. A generative model has been
defined for density estimation which is a multivariate extension of the Hidden
Process Regression Model [3]. This strategy is applied to monitor pneumatic
doors. The experimental results showed a certain practicability of the approach.
We believe this strategy could be used to an application when sustained special
causes are observed, those that continue until they are identified and fixed.
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