
Manifold-based non-parametric learning of
action-value functions

Hunor S. Jakab and Lehel Csató

Faculty of Mathematics and Informatics, Babeş-Bolyai University
1 Kogâlniceanu str, RO-400084, Cluj-Napoca, Romania.

Abstract. Finding good approximations to state-action value functions
is a central problem in model-free on-line reinforcement learning. The use
of non-parametric function approximators enables us to simultaneously
represent model and confidence. Since Q functions are usually discontinu-
ous, we present a novel Gaussian process (GP) kernel function to cope with
discontinuity. We use a manifold-based distance measure in our kernels,
the manifold being induced by the graph structure extracted from data.
Using on-line learning, the graph formation is parallel with the estimation
algorithm. This results in a compact and efficient graph structure, elimi-
nates the need for predefined function class and improves the accuracy of
the estimated value functions, as tested on simulated robotic control tasks.

1 Introduction

Most real-life control problems require efficient handling of continuous and high
dimensional state-action spaces. Also, the ability to handle uncertainties can
be a deciding factor in good performance. We mention linear models [1, 5] and
neural networks [9] that have been used successfully for this purpose. The main
drawback of these methods is the lack of probabilistic treatment and the inability
to represent discontinuities. Gaussian processes (GPs) [8] are good in approxi-
mating action value functions on continuous spaces since they can approximate
arbitrary smooth functions and provide a full probabilistic model. There are
many reinforcement learning (RL) tasks where value functions are discontinuous
and having the discontinuity has great influence on system performance.

To tackle discontinuities in Q-functions, we present a novel GP approxima-
tion. We exploit the information in the sequence of data is normally lost but
that encodes valuable information about the system dynamics. The information
is used to construct a manifold of probable state-transitions.This structure is up-
dated continuously, leading to an approximate system dynamics effective only
in the operating region of the agent. We make use of a manifold-based distance
measure, the manifold being induced by a graph of nodes that were already
visited. Unlike in related work [11], the nodes of the MDP–induced graph are
allocated dynamically. In our algorithm we employ sparsification [2], and this
mechanism ensures that only relevant points from the state-action space are ex-
plicitly represented, thereby eliminating the need to cover the whole state-action
space. The online sparsification algorithm [2] ensures that only those data-points
are retained which are important for prediction. This means that there is no
explicit definition of the support, increasing the flexibility of the algorithm.

579

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

2 Notation and background

A Markov decision process [6] or MDP is a quadruple M(S,A, P,R) with S the
set of states; A the set of actions; P (s′|s, a) : S × S × A → [0, 1] the transition
probabilities, and R : S×A → R, R(s, a) the reward function. The policy π driv-
ing the agent is a conditional probability over state-action space: π(s|a) : S×A →
[0, 1]. We define the expected utility of a state-action pair, given a policy π, with
the the Q-value function: Qπ(s, a) = Eπ (

∑∞
t=0 γtRst,at

|s0 = s, a0 = a). Value-
based RL methods use greedy action selection based on Q, instead of an explicit
policy representation. In high dimensional, continuous state-action spaces, Q-
values cannot be represented explicitly, therefore we use approximations to the
Q-value function using GPs. A Gaussian process (GP) is fully specified by its
mean and covariance function and performs probabilistic regression in a func-
tion space. Since the mean function is usually zero, GPs require the covariance
matrix KKKn = [k(xi, xj)]ni,j , with k, the covariance function of the GP. Having
processed n data, the resulting GP is built on the data set D = [(xi, yi)]i=1,n,
which we also call the support set or basis vector set (BV). For a new point x∗

we need the predictive mean and variance functions, conditioned on the data,
i.e. the posterior GP [8]:

E[Q(x∗)] = kkkx∗αααn

cov[Q(x∗), Q(x∗)] = k (x∗, x∗) − kkkx∗CCCnkkkT
x∗ , (1)

where αααn and CCCn are the parameters of the posterior GP, computed as αααn =
[KKKn+ΣΣΣn]−1yyy and CCCn = [KKKn+ΣΣΣn]−1 respectively, with ΣΣΣn = σσσIn the observation
noise and kkkn+1 a vector containing the covariances between the new point and
the training points, kkkx∗ = [k(x1, x

∗), . . . , k(xn, x∗)].

3 Gaussian process approximation to Q functions

Using GP’s as value function approximators is justified with the following argu-
ment: for an RL algorithm that requires as little hand tuning as possible, we
have to use a flexible – large – function class with as few constraints as possible
and Gaussian processes are ideal candidates. Unlike parametric or linear models,
the predictive quantities in a GP are – kernel – functions [10] of the input data,
thus there is a good adaptation of the algorithm to the data. It is nevertheless
advised to optimize the parameters of the covariance functions, doable e.g. with
evidence maximization [8]. Different approaches for GP-based value function
estimation have been proposed [3, 7, 4]. In our approach we use state-action
pairs as training inputs: xt = [sT

t , aT
t]T , and the corresponding – discounted –

cumulative rewards yt =
∑H−t

i=0 γiRst+i,at+i
as noisy target values, with H the

length of an episode.1 The above described method leads to good value function
estimates when there are no significant discontinuities in the true value function.

1We assume that the targets have Gaussian noise with equal variance; one can easily use
different noise variance levels, or other types of noise [2].

580

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

The smoothing nature of a GP-based approximator prevents the represen-
tation of discontinuities (or including it would break other properties). The
predictive mean, eq. (1), corresponding to any state x∗ is a linear combination
of values of already included basis vectors, since (KKKn+ΣΣΣn)−1yyy can be considered
as a weight vector applied to functions including the training set k(x�, x

∗). The
predictive mean is thus a function of the test point x∗ and those data-points from
the training set that are “close” to the test-point. However, since the dynamics
P (s′|s, a) of the system is not known, there might be regions that are close in
the state space but where transition between these neighboring states may not
even be possible.

We think that the sequential nature of the data is important: each sequence
comes from a manifold where states are close. We have this information since
data sequences come in roll-outs τττ = {(st, at, rt, st+1)}H

t=1 and we know that
transition between consecutive state pairs is possible. This means that “close-
ness” should take into account the length of the path from one state x� to the
other state x∗. In our algorithm we exploit the on-line sparsification mechanism
[2]. During training only those data-points are added to the active set – BV –
that provide significant information; we measure this by comparing the posterior
processes with and without the inclusion of a new data-point.

4 Constructing the MDP induced graph structure

Let G(V,E) be a sparse graph induced by the MDP with vertices V , and edges
E. The graph has n nodes; the construction of the edges runs in parallel with
the GP inference, namely with the addition of a new datum to the BV set. If
xt is added to the basis vectors, it is also added to the graph as a new node and
we connect it to the existing graph as follows:

Ext,xi
=

{
‖xi − xt‖2 if exp

(−‖xi − xt‖2
)

> ε ε ∈ [0, 1]
0 otherwise

i = 1 . . . n (2)

The threshold value ε limits the number of neighbors of a node xt. Figure 1 shows
the constructed graphs for two different values of ε for the inverted pendulum
control problem based on 5 roll-outs following a fixed policy. We observe that
the number of edges increases exponentially with ε.

Shortest paths between nodes of the graph are found with Dijkstra’s algo-
rithm and stored in a |V | × |V | symmetric matrix PPP . The ability to limit the
maximum number of nodes, enables the operation on continuous state-action
spaces and the representation of shortest path distances between nodes in a
lookup table. This also reduces the computational burden associated with the
calculation of the optimal distances. Figure 2.a shows the graph after training
the GP for 3 episodes on the inverted pendulum problem (see Section 5), with a
Gaussian policy and a fixed neural-network based controller. Based on G(V,E),
we have a new kernel that uses as a distance measure the shortest path on the

581

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

−4

−2

0

2

4

6
1 2 3 4 5 6

80

100

120

140

−4

−2

0

2

4

6
1 2 3 4 5 6

80

100

120

140

Fig. 1: Constructed graph structure with (a) ε = 0.3 (b) ε = 0.5

graph G:

ksp(x, x′) = A exp
(
−SP(x, x′)2

2σsp

)
(3)

where the amplitude of the Q-function A and σsp are hyper-parameters to the
system (we set these values to 1). The main problem is that not all possible in-
puts are represented in the graph, therefore we employ two methods for shortest
path computation between a continuous input x∗ and a basis vector xj :

SP(x∗, xj)
(1)= ‖x∗ − xi‖2 + PPP i,j where xi = argmin

x�∈BV
‖x∗ − x�‖2 (4)

(2)= kkkT
x∗PPPeeej =

n∑
i=1

k(x∗, xi)PPP i,j (5)

where PPP stores the lengths of the shortest paths between basis vectors xi and
xj , and eeej is the j-th unit vector of length n. The first method uses only the
closest node to the new input x∗ to obtain the shortest path to xj , whereas
the second performs an averaging over all existing nodes in the BV set. The
weighted averaging is necessary in some cases to avoid sudden inconsistencies in
the obtained Q-function. The kernel function k from eq. (4) is a squared ex-
ponential kernel k(x, x′) = exp

(− 1
2 (x − x′)TΣΣΣ−1(x − x′)

)
with a small diagonal

covariance matrix ΣΣΣ = IIIσSE . The value functions from Figure 2 correspond to
a fixed sub-optimal policy on the inverted pendulum control task. The policy
was deliberately set up in such a way as to provide close to optimal actions
only when the pendulum approaches the target region with a fairly low speed.
The resulting discontinuities in the estiamted value function are clearly visible
on both shortest path approximations, however the interpolated version has a
greater generalization potential. The standard GP approximation smooths out
the value estimates across points.

5 Experiments and results

We performed simulated experiments on the inverted pendulum control task,
where we kept both the state and the action space continuous. A state variable

582

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

s = (θ, ω) consists of the angle and angular velocity of the pendulum, actions
are the continuous torques that we can apply to the system, and are limited
to a [−5, 5] interval. The goal in this control task is to swing-up and balance
the pendulum in an upright position. The performance of the proposed value-
function approximation scheme is tested under a fixed Gaussian policy which
consists of a deterministic controller and added Gaussian noise with fixed vari-
ance π(s, a) = N (0, σ2) + fθ(s). As a baseline we used the TD approximation
of the corresponding value function, based on 800 episodes of length 150. For
TD the state space was discretized to contain 3600 states and the action space
to contain 80. The GP approximations were trained on 3 episodes of 250 steps.
Figure 3 shows the approximation accuracy of both standard GP and shortest
path distance based GP value function approximation where the horizontal axis
represents the maximum number of allowed basis vectors and the vertical axis
measures the mean squared approximation error. In terms of approximation
error GP with geodesic Gaussian kernel performs significantly better by low
number of basis vectors, and achieves the same performance as standard GP
after the number of BV’s exceeds a threshold. However the variance of the value
function estimates decreases slower when the shortest path kernel is being used.
There is also a performance decrease in a certain region of max BV numbers
where the performance gets worse than standard GP.

6 Conclusion

We presented a modality of dynamically constructing kernel functions with
manifold-based distance measures for GP value function approximation. Unlike
in previous work, where fixed resolution graph structures have been used, we
presented a way to construct the MDP induced graph only between data-points
which are important from the information-gain point of view. We have also
eliminated the need for manually defined basis functions. Due to the employed
sparsification mechanism the computational complexity of the GP training is
reduced to O(N |BV |2). The complexity of Dijkstra’s algorithm on G is also
bound by the maximal number of basis vectors allowed: O(|BV | log |BV |+ |E|)

−8 −6 −4 −2 0 2 4 6 8

1

2

3

4

5

6

−8 −6 −4 −2 0 2 4 6 8

1

2

3

4

5

6

−8 −6 −4 −2 0 2 4 6 8

1

2

3

4

5

6

Fig. 2: (a) Euclidean distance , (b) minimum shortest path eq. (4) , (c) interpo-
lated shortest path eq. (5)

583

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

34 45 60 91 118 172 221 530 744

600

620

640

660

680

700

720

740

760

780

800

Max number of basis vectors

M
SE

GP with SP kernel
GP standard

34 45 60 91 118 172 221 530
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Max number of basis vectors

No
rm

al
iz

ed
 v

ar
ia

nc
e

GP with SP kernel
GP standard

Fig. 3: (a) Mean squared error , (b) Normalized Variance

In future work we will be applying the presented method in a policy iteration
framework, while exploiting the probabilistic nature of GPs to facilitate ex-
ploration. The crude system dynamics model given by the constructed graph
structure could also be used to perform experience replay in order to reduce the
number of required environment interactions.

References

[1] S. J. Bradtke, A. G. Barto, and P. Kaelbling. Linear least-squares algo-
rithms for temporal difference learning. In ML, pages 22–33, 1996.

[2] Lehel Csató and Manfred Opper. Sparse on-line Gaussian Processes. Neural
Computation, 14(3):641–669, 2002.

[3] Marc Peter Deisenroth, Carl Edward Rasmussen, and Jan Peters. Gaussian
process dynamic programming. Neurocomputing, 72(7-9):1508–1524, 2009.

[4] Y. Engel, S. Mannor, and R. Meir. Reinforcement learning with Gaussian
processes. In ICML ’05: Proceedings of the 22nd international conference
on Machine learning, pages 201–208, New York, NY, USA, 2005. ACM.

[5] Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration. J.
Mach. Learn. Res., 4:1107–1149, December 2003.

[6] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, Inc., New York, NY, 1994.

[7] C. E. Rasmussen and M. Kuss. Gaussian processes in reinforcement learn-
ing. In L. K. Saul Thrun, S. and B. Schölkopf, editors, NIPS 2003, pages
751–759. MIT Press, 2004.

[8] Carl Edward Rasmussen and Christopher Williams. Gaussian Processes for
Machine Learning. MIT Press, 2006.

[9] Martin Riedmiller. Neural fitted q iteration In In 16th European Conference
on Machine Learning, pages 317–328. Springer, 2005.

[10] B. Schölkopf and A. J. Smola. Learning with Kernels. The MIT Press,
Cambridge, MA, 2002.

[11] Masashi Sugiyama, Hirotaka Hachiya, Christopher Towell, and Sethu Vi-
jayakumar. Geodesic Gaussian kernels for value function approximation.
Auton. Robots, 25:287–304, October 2008.

584

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

