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Abstract. By means of local neighborhood regression and time windows,
the generative topographic mapping (GTM) allows to predict and visually
inspect time series data. GTM itself, however, is fully unsupervised. In
this contribution, we propose an extension of relevance learning to time
series regression with GTM. This way, the metric automatically adapts
according to the relevant time lags resulting in a sparser representation,
improved accuracy, and smoother visualization of the data.

1 Introduction

The self-organizing map (SOM) and variants have extensively been used for time
series prediction and inspection, see e.g. [1, 9]. This is caused by the excellent
generalization ability of SOM since it relies on an unsupervised prototype-based
tessellation of the data space. This way, reliable models can be obtained also
for high-dimensional, noisy data and few training samples. Further, SOM and
alternatives such as the generative topographic mapping (GTM) offer diverse
functionality besides basic regression such as the possibility to inspect typical
time series motifs as expressed by the prototypes.

By far the most common way of time series prediction is based on a sliding
window [5], whereby standard linear models often yield surprisingly good re-
sults. A choice of the correct time window, and, more severely, an interpretation
which time lags carry meaningful information remains a challenge. Albeit an
embedding usually exists due to Takens’ theorem, time lags are often restricted
to values derived from the autocorrelation or geometric arguments [5, 10].

Only few approaches consider a fine grained relevance detection – an in-
formation which would be beneficial for an interpretation of the dependencies
present in the given time series. A couple of techniques have been proposed to
extend classical prototype-based techniques such as SOM, its statistical coun-
terpart GTM, or supervised variants to metric adaptation [6, 4, 3]. In an early
attempt, this technique has been used to determine relevant dimension for clas-
sification tasks on time windows [11]. In this contribution, we transfer relevance
learning to time-window based regression tasks for time series prediction based
on GTM, this way arriving at an interpretable relevance profile about which
time lags contribute most to a given temporal dynamics. Now, we define the
basics of GTM first, introducing relevance learning into GTM, afterwards, and
concluding with experiments and discussion. Thereby, time series prediction is
treated as a classical regression task by a standard time window approach.

∗This work has been supported by the DFG under grant number HA 2719/4-1 and by the
Cluster of Excellence 277 Cognitive Interaction Technology funded in the framework of the
German Excellence Initiative.
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2 The generative topographic mapping

The generative topographic mapping (GTM) has been proposed as a statistical
counterpart to SOM which generates data by means of a constrained mixture of
Gaussians induced by a low dimensional latent space [2]. GTM models data x

as a mixture distribution p(x|W, β) =
∑K

k=1
p(wk)p(x|wk,W, β) of Gaussians

p(x|w,W, β) =

(

β

2π

)D/2

exp

(

−
β

2
‖x− y(w,W)‖2

)

(1)

where y(w,W) maps prototypes w in low dimensional latent space to the data
space by means of a generalized linear regression model induced by fixed base
functions and parameterized by W. wk, k = 1, . . . , K are the positions of lattice
points in the latent space. D is the data dimensionality. Training optimizes the
data log likelihood by an expectation maximization (EM) approach where the
hidden variables are given by the responsibilities

rkn = p(wk|xn,W, β) =
p(xn|wk,W, β)p(wk)

∑

k′ p(xn|wk′ ,W, β)p(wk′ )
(2)

of mode k for data point xn; parameters β and W are set in the M step, see [2].

3 Relevance learning for regression

Relevance learning has been introduced in the context of prototype based clas-
sification [4]. Essentially, it adapts the metric used to compare prototypes and
data according to the relevance of the single dimensions based on auxiliary class
information. It has recently been extended to unsupervised data inspection by
extending GTM similarly if class labels are available [3]. Here we transfer rel-
evance learning to GTM used for regression tasks. Assume data point x

n is
equipped with a real valued output ln. Posterior labeling yields the prototype
label

ck =

N
∑

n=1

rknln/

N
∑

n′=1

rkn
′

, (3)

for prototype k. N is the number of data points. This induces the smooth

regression function x
n 7→ l(xn) =

∑K
k=1

rknck and, thus, the mean squared
error

MSE =
1

N

N
∑

n=1

(

ln −

K
∑

k=1

rknck

)2

(4)

In relevance learning, the standard Euclidean metric in (1) is substituted by the
weighted metric

‖x− t‖2λ =

D
∑

d=1

λ2

d(xd − td)
2 . (5)

The parameter λd indicates the relevance of dimension d. It should be adapted
to emphasize the relevance of this dimension for the given regression task at
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init
repeat

E-step: determine rkn based on ‖x− t‖2λ as in (2)
M-step: determine W and β as in GTM ([2])
label prototypes as in (3)
adapt λ by stochastic gradient descent on MSE(λ) in (4)
normalize and regularize λ

Table 1: Integration of relevance learning into GTM

hand. One simple way to determine λd is given by a minimization of the error
(4). Thereby, for simplicity, we assume that the labels of prototypes ck are
fixed (which is reasonable if metric adaptation is done on a slower time scale
than the adaptation of prototypes and responsibilities). In addition, we add
the regularizer REG = −γ/2

∑

d exp(−λ2

d) with parameter γ ≥ 0 after gradient
descent to the weights λ to enforce sparsity of the relevance profile, and we
normalize the relevance profile to prevent divergence. Now the parameters λd can
be adapted using a simple gradient technique. This metric adaptation according
to a given regression task is interleaved with the standard EM training of GTM
to arrive at a tessellation of the data space. A schematic representation of
relevance learning can be seen in Tab. 1.

4 Experiments

We use GTM for time series prediction. Initially, a time series T is transformed
using a sliding window of size D into the regression problem x

n = (T (n), T (n+
1), . . . , T (n+D− 1)) 7→ ln = T (n+D). Relevance learning delivers a profile λd

which indicates which time lag is particularly relevant within this window. We
test relevance learning using three time series, see Fig. 1:

• The Laser generated data from the Santa Fe Time Series competition1

consists of 1000 training measurements of a signal with simple short scale
oscillations and a rapid decay of oscillations. The test set is of size 9093.
The initial time window is of size 15.

• The El Nino data set stems from a competition organized within the Sym-
posium ESTSP in 20072. The data has 875 entries. We use a time window
of 15 and evaluate the data set within a ten-fold crossvalidation.

• The Herring data set collects the seasonal spawning stock biomass of her-
ring from the Baltic Sea main basin measured during 1974-2007. Spawning
stock biomass indicates the total weight of the fish that are mature enough
to reproduce. The data stems from the International Council for the Ex-
ploration of the Sea ICES3 database associated with [7]. A total of 120
points are available. A time window 16 corresponding to a time span of 4
years is chosen. We use a leave-one-out cross-validation for evaluation.

1http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html
2http://research.ics.tkk.fi/eiml/datasets.shtml
3www.ices.dk
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Fig. 1: Three tested time series: Sante Fe Laser data set (left), ESTSP2007
competition data (middle) and biomass of herring from the Baltic Sea (right).

GTM is initialized by the first two principal components of data. The map-
ping y(w,W) is based on 10×10 Gaussian base functions for Laser and El Nino
and 3 × 3 for Herring. To speed up training, we use a 20 × 20 prototype grid
for training for Laser and El Nino which is enlarged to 40 × 40 after training
to achieve a better labeling resolution. Herring is trained and labeled using a
10× 10 grid. The learning rate and the regularizer γ are optimized based on the
MSE of the training set. This yields η = 0.3, γ = 0.1 for Laser, η = 0.4, γ = 0.3
for El Nino, and η = 1.5, γ = 0 for Herring. In comparison, we train a GTM
without relevance adaptation. Additionally, an ARMA model is trained using
the System Identification Toolbox. Data are z-transformed before training.

The normalized mean squared error obtained by GTM regression with and
without relevance learning, as well as by ARMA, is shown in Tab. 2. Obviously,
in all cases, relevance learning improves the quality of the GTM. The improved
prediction accuracy is mirrored by a clearer topological ordering of the maps
according to the regression task, as exemplarily depicted for the Laser data
set in Fig. 3. Relevance learning reduces the topological defects with respect
to the regression values. This is also confirmed by the quantization error for
GTM mapping, which is 4.6744 with and 66.8650 without relevance learning.
Furthermore, interesting areas of the map can be inspected by visualizing the
prototypes, which depict typical behavior of the time series, see Fig. 3.

More important, relevance learning yields clear profiles which allow to infer
the relevance of the given time lags, see Fig. 2. Interestingly, the variation over
the cross-validation is very small concerning the judgement of several irrelevant
time lags for El Nino and Herring, while it has larger fluctuation for other lags
within a cross-validation. In general, these profiles confirm relevant dimensions
for the two benchmark time series Laser and El Nino which have been inferred
previously. For the Baltic Herring data, the relevance profile reveals interesting
meaningful factors: The previous two seasons are important to be able to follow
the current trend of the series. Variables 4, 8 and 12 represent the same season
as the one we want to predict, as there are strong seasonal oscillations, but

Laser El Nino Herring
GTM 0.0800 0.0423 (0.0017) 0.5538
Relevance GTM 0.0212 0.0368 (0.0013) 0.4252
ARMA 0.1775 0.0255 0.4202

Table 2: Normalized mean squared error for the different data sets for the test
set (Laser), or a cross-validation (El Nino, Herrring)
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Fig. 2: Relevance profile for Laser (left), El Nino(middle), Herring (right). The
standard deviation achieved in a cross-validation is also depicted for the latter.

not longer than 3 years. Interestingly, variables 13, 14 and 15 have a relevant
contribution, which mirrors their relevance as the possible influx of new adults
at present time, as the period of sexual maturity is around 3 years [8].

An interesting aspect of time series prediction based on an unsupervised
topographic mapping is the usually resulting stable dynamics. This aspect has
also been explored in the work [9]. Here, we just have a short glimpse at the
long-time behavior of a GTM trained with relevance learning for the full El Nino
data set. The result of a long term prediction for the next 1000 steps by means
of repeated one step prediction is depicted in Fig. 4. Thereby, we use the GTM
obtained while training on the full data set and the corresponding relevance
profile (see Fig. 4(right)). Interestingly, only very few lags are indicated as
important in this setting such that a very sparse model results. Further, the long
term behavior of the time series prediction shows a very reasonable shape with
periodic oscillations. Obviously, due to noise in the data, the error necessarily
drops down. Nevertheless, the qualitative behavior remains stable due to its
grounding in the prototype-based GTM representation.

5 Discussion

We have extended unsupervised GTM when used for regression tasks with super-
vised relevance learning. This way, a very intuitive model results which adapts
the metric according to the given learning tasks, resulting in better interpretabil-
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Fig. 3: GTM visualization without (left) and with relevance learning (middle) of
Laser. The labeling of the prototypes is denoted as grey value. Three exemplary
prototypes are depicted on the right side. The first one shows normal oscillation,
the second shows the break down and the last one shows the beginning of the
new oscillations.
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Fig. 4: Long term prediction for the El Nino data for the next 1000 time points
as predicted by GTM with relevance learning (left) and relevance profile when
trained on the full data set in the same setting (right).

ity and a smoother topographic mapping. We have discussed the meaning of
relevance learning in the context of time window based time series prediction,
and we have linked the resulting relevance profiles to relevant time lags in three
exemplary benchmark data sets. This way, very sparse prototype based models
result which also yield stable long term behavior. At present, the algorithmic
update relies on the MSE where we assume that the prototype labeling is fixed.
It remains a subject of future work to study the influence of the relevance param-
eters on the posterior labeling, and to complement the current update rule by
rules stemming from alternative cost functions (such as e.g. multistep models).
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