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Abstract. We investigate the relation between two quantitative mea-
sures characterizing short term memory in input driven dynamical systems,
namely the short term memory capacity (MC) [2] and the Fisher memory
curve (FMC) [1]. We show that under some assumptions, the two quan-
tities can be interpreted as squared ‘Mahalanobis’ norms of images of the
input vector under the system’s dynamics and that even though MC and
FMC map the memory structure of the system from two quite different
perspectives, they can be linked by a close relation.

1 Introduction

Input driven dynamical systems play an important role as machine learning
models when data sets exhibit temporal dependencies, e.g. in prediction or
control. In an attempt to characterize dynamic properties of such systems,
measures have been suggested to quantify how well past information can be
represented in the system’s internal state. In this contribution we investigate
two such well known measures, namely the short term memory capacity spectrum
MCk [2] and the Fisher memory curve J(k) [1]. The two quantities map the
memory structure of the system under investigation from two quite different
perspectives. So far their relation has not been closely investigated. In this paper
we take the first step to bridge this gap and show that under some conditions
MCk and J(k) can be related in an interpretable manner.

2 Background

We study linear input driven state space models with N -dimensional state space
and univariate inputs and outputs. Such systems can be represented e.g. by
linear Echo State Networks (ESN) [3] with N recurrent (reservoir) units. The
activations of the input, internal (state), and output units at time step t are de-
noted by s(t), x(t), and y(t), respectively. The input-to-recurrent and recurrent-
to-output unit connections are given by N -dimensional weight vectors v and u,
respectively; connections between the internal units are collected in an N × N
weight matrix W . We assume there are no feedback connections from the output
to the reservoir and no direct connections from the input to the output. Under
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these conditions, the reservoir units are updated according to:

x(t) = vs(t) +Wx(t− 1) + z(t), (1)

where z(t) are zero-mean noise terms. The linear readout is computed as1:

y(t) = uTx(t). (2)

The output weights u are typically trained both offline and online by minimizing
the Normalized Mean square Error:

NMSE =
〈‖y(t)− τ(t)‖22〉

〈‖τ(t)− 〈τ(t)〉‖22〉
, (3)

where y(t) is the readout output, τ(t) is the desired output (target), ‖.‖2 denotes
the Euclidean norm and 〈·〉 denotes the empirical mean.

In ESN, the elements of W and v are fixed prior to training with random
values drawn from a uniform distribution over a (typically) symmetric inter-
val. The reservoir connection matrix W is typically scaled as W ← αW/|λmax|,
where |λmax| is the spectral radius ofW and 0 < α < 1 is a scaling parameter [3].

Short Term Memory Capacity (MC): In [2] Jaeger quantified the ability
of recurrent network architectures to represent past events through a measure
correlating the past events in a (typically i.i.d.) input stream with the network
output. In particular, the network (1) without dynamic noise (z(t) = 0) is
driven by a univariate stationary input signal s(t). For a given delay k, we
consider the network with optimal parameters for the task of outputting s(t−k)
after seeing the input stream ...s(t − 1)s(t) up to time t. The goodness of fit
is measured in terms of the squared correlation coefficient between the desired
output τ(t) = s(t− k) and the observed network output y(t):

MCk =
Cov2(s(t− k), y(t))

V ar(s(t)) V ar(y(t))
, (4)

where Cov and V ar denote the covariance and variance operators, respectively.
The short term memory (STM) capacity is then given by [2] MC =

∑∞
k=1 MCk.

Jaeger [2] proved that for any recurrent neural network with N recurrent neu-
rons, under the assumption of i.i.d. input stream, the STM capacity cannot
exceed N .

Fisher Memory Curve (FMC): Memory capacity MC represents one way
of quantifying the amount of information that can be preserved in the reser-
voir about the past inputs. In [1] Ganguli, Huh and Sompolinsky proposed a

1The reservoir activation vector is extended with a fixed element accounting for the bias
term.

44

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.



different quantification of memory capacity for linear reservoirs corrupted by
a Gaussian state noise. In particular, it is assumed that the dynamic noise
z(t) is a memoryless process of i.i.d. zero mean Gaussian variables with co-
variance ǫI (I is the identity matrix). Then, given an input driving stream
s(..t) = ... s(t − 2) s(t − 1) s(t), the dynamic noise induces a state distribution
p(x(t)|s(..t)), which is a Gaussian with covariance [1]

C = ǫ

∞
∑

ℓ=0

W ℓ(WT )ℓ. (5)

The Fisher memory matrix quantifies sensitivity of p(x(t)|s(..t)) with respect
to small perturbations in the input driving stream s(..t) (parameters of the
recurrent network are fixed),

Fk,l(s(..t)) = −Ep(x(t)|s(..t))

[

∂2

∂s(t− k)∂s(t− l)
log p(x(t)|s(..t))

]

and its diagonal elements J(k) = Fk,k(s(..t)) quantify the information that x(t)
retain about a change (e.g. a pulse) entering the network k time steps in the past.
The collection of terms {J(k)}∞k=0 was termed Fisher memory curve (FMC) and
evaluated to [1]

J(k) = vT (WT )kC−1W kv. (6)

Note that, unlike the short term memory capacity, it turns out that FMC does
not depend on the input driving stream.

3 Relation between short term memory capacity and Fisher

memory curve

We first briefly introduce some necessary notation. Denote the image of the
input weight vector v through k-fold application of the reservoir operator W by
v(k), i.e. v(k) = W k v. Define A = 1

ǫ
C −G, where

G =

∞
∑

ℓ=0

v(ℓ) (v(ℓ))T . (7)

Provided A is invertible, denote G (A−1 + G−1) G by D. For any positive
definite matrix B ∈ R

n×n we denote the induced norm on R
n by ‖ · ‖B , i.e. for

any v ∈ R
n, ‖v‖2B = vTBv. We are now ready to formulate the main result.

Theorem: Let MCk be the k-th memory capacity term (4) of network (1) with
no dynamic noise, under a zero-mean i.i.d. input driving source. Let J(k) be
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the k-th term of the Fisher memory curve (6) of network (1) with i.i.d. dynamic
noise of variance ǫ. If D is positive definite, then

MCk = ǫ J(k) + ‖v(k)‖2D−1 (8)

and MCk > ǫ J(k), for all k > 0.

Proof: Given an i.i.d. zero-mean real-valued input stream s(..t) = ... s(t −
2) s(t− 1) s(t) of variance σ2 emitted by a source P , the state at time t of the
linear reservoir (under no dynamic noise (ǫ = 0)) is

x(t) =

∞
∑

ℓ=0

s(t− ℓ) W ℓ v =

∞
∑

ℓ=0

s(t− ℓ) v(ℓ).

For the task of recalling the input from k time steps back, the optimal least-
squares readout vector u is given by

u = R−1 p(k), (9)

where
R = EP (s(..t))[x(t) x

T (t)] = σ2 G

is the covariance matrix of reservoir activations and

p(k) = EP (s(..t))[s(t− k) x(t)] = σ2 v(k).

Provided R is full rank, the optimal readout vector u(k) for delay k reads

u(k) = G−1 v(k). (10)

The optimal ‘recall’ output at time t is then y(t) = xT (t) u(k), yielding

Cov(s(t− k), y(t)) = σ2 (v(k))T G−1 v(k). (11)

Since for the optimal recall output Cov(s(t− k), y(t)) = V ar(y(t)) [2, 4], we
have

MCk = (v(k))T G−1 v(k). (12)

The Fisher memory curve and memory capacity terms (6) and (12), respectively
have the same form.

The matrix G =
∑∞

ℓ=0 v
(ℓ) (v(ℓ))T can be considered a scaled ‘covariance’

matrix of the iterated images of v under the reservoir mapping. Then MCk is
the squared ‘Mahalanobis norm’ of v(k) under the covariance structure G,

MCk = ‖v(k)‖2G−1 . (13)
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Analogously, J(k) is the squared ‘Mahalanobis norm’ of v(k) under the covariance
C of the state distribution p(x(t)|s(..t)) induced by the dynamic noise z(t),

J(k) = (v(k))T C−1 v(k)

= ‖v(k)‖2C−1 . (14)

Denote the rank-1 matrix vvT by Q. Then by (5), 1
ǫ
C = A+G, where

A =

∞
∑

ℓ=0

W ℓ (I −Q) (WT )ℓ.

It follows that ǫC−1 = (A+G)−1 and, provided A is invertible (and (A−1+G−1)
is invertible as well), by matrix inversion lemma,

ǫC−1 = G−1 −G−1 (A−1 +G−1)−1 G−1.

We have

J(k) = (v(k))T C−1 v(k)

=
1

ǫ
MCk −

1

ǫ
(v(k))T D−1 v(k),

where
D = G (A−1 +G−1) G.

Since G and A are symmetric matrices, so are their inverses and hence D is
also a symmetric matrix. Provided D is positive definite, it can be considered
(inverse of a) metric tensor and

MCk = ǫ J(k) + ‖v(k)‖2D−1 .

Obviously, in such a case, MCk > ǫ J(k) for all k > 0. �

From (8) we have:
∑∞

k=0 MCk = ǫ
∑∞

k=0 J(k) +
∑∞

k=0 ‖v
(k)‖2

D−1 . If the
input weight vector v is a unit vector (‖v‖2 = 1) and the reservoir matrix W is
normal (i.e. has orthogonal eigenvector basis), we have

∑∞
k=0 J(k) = 1 [1]. In

such cases
∑∞

k=0 MCk = N , implying

∞
∑

k=0

‖v(k)‖2D−1 = N − ǫ. (15)

As an example of metric structures underlying the norms in (8), (13) and
(14), we show in figure 1 covariance structure of C (ǫ = 1), G and D corre-
sponding to a 15-node linear reservoir. The covariances were projected onto
the two-dimensional space spanned by the 1st and 14th eigenvectors of C (rank
determined by decreasing eigenvalues). Reservoir weights were randomly gen-
erated from a uniform distribution over an interval symmetric around zero and
then W was normalized to spectral radius 0.995. Input weights were generated
from uniform distribution over [−0.5, 0.5].
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Fig. 1: Covariance structure of C (left), G (middle) and D (right) for a 15-node
linear reservoir projected onto the 1st and 14th eigenvectors of C. Shown are
iso-lines corresponding to 0.5, 1, 1.5, ..., 3 standard deviations.

4 Conclusions

We investigated the relation between two quantitative measures suggested in the
literature to characterize short term memory in input driven dynamical systems,
namely the short term memory capacity spectrum MCk and the Fisher memory
curve J(k), for time lags k ≥ 0. J(k) is independent of the input driving
stream s(..t) and measures the ‘inherent’ memory capabilities of such systems
by measuring the sensitivity of the state distribution p(x(t)|s(..t)) induced by the
dynamic noise with respect to perturbations in s(..t), k time steps back. On the
other handMCk quantifies how well the past inputs s(t−k) can be reconstructed
by linearly projecting the state vector x(t). We have shown that under some
assumptions, the two quantities can be interpreted as squared ‘Mahalanobis’
norms of images of the input vector under the system’s dynamics and that
MCk > ǫ J(k), for all k > 0. Even though MCk and J(k) map the memory
structure of the system under investigation from two quite different perspectives,
they can be closely related.
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