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Abstract. In randomized parallel ensembles the class label predictions
for a particular instance by different ensemble classifiers are independent
random variables. Taking advantage of this independence we design a
statistical test to identify instances near the decision borders, which are
difficult to classify because of their proximity to these borders. For these
instances, the performance of the ensemble is poor and approaches random
guessing. The validity of this analysis and the usefulness of the proposed
statistical test are illustrated in several real-world classification problems.

1 Introduction

Randomized parallel ensembles are composed of predictors built in independent
applications of a randomized learning algorithm on a fixed set of labeled ex-
amples. By construction, the predictions of different ensemble members on a
fixed test example are independent random variables, when conditioned to the
training data. The independence of these predictions implies that the joint prob-
ability of error on a given instance factorizes as well. By contrast, when averaged
over all instances, the errors of different predictors are not independent. These
independence properties have been used in previous work to analyze the con-
vergence of ensemble predictions [6], to estimate the prediction of the complete
ensemble on the basis of a small subset of predictions [7] and to make inference
on the prediction of an ensemble of infinite size [8]. The goal of the current
investigation is to provide an empirical verification of the independence of the
individual class predictions for a particular instance in parallel randomized en-
sembles (Section 2). We then take advantage of this independence to design a
test that identifies data instances that are close to the decision borders (Section
3). For these instances, the predictions of the ensemble are close to random
guessing. Therefore, they tend to concentrate most of the classification errors.

2 Predictions in Parallel Randomized Ensembles

The goal of supervised learning is to induce a predictor with good generalization
properties from the set of labeled examples Dtrain = {(xi, yi)) ∈ Z}Ntrain

i=1 , where
Z ≡ X × Y, X is the space of attributes and Y is the set of class labels. A
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predictor h(·) ∈ H is a function h : X → Y that, given an unlabeled example
x ∈ X , assigns a class label h(x) ∈ Y to that example. Ensembles yield an
aggregate decision by combining the outputs of a collection of such predictors.
A common strategy to construct an ensemble is to use a randomized algorithm
Lθ : Z → H as a base learner. The learning algorithm Lθ generates a predictor
h(·|D, θ) ∈ H when applied to some set of labeled instances D ∈ Z. The random
variable θ encodes the random decisions taken in the process of constructing the
individual ensemble predictors [4]. By making T independent applications of
the randomized learning algorithm Lθ on the available training data Dtrain, one
generates the parallel ensemble {ht(·) ≡ ht(·|Dtrain, θt)}Tt=1, where {θt}Tt=1 are
independent identically distributed random variables. Examples of these types
of ensembles include bagging [3], random forest [4], extra trees [5], rotation for-
est [11] and class switching ensembles [9]. The nature and dimensionality of θ
depend on the particular base learning algorithm used to generate the individual
predictors. In bagging θ encodes the bootstrap samples used to built the individ-
ual predictors in the ensemble. These are obtained by sampling with replacement
from the original training data. Therefore θ is a vector of Nresample independent
random integers, each of which takes values in the range {1, . . . , Ntrain} with
equal probability. In standard implementations of bagging, Nresample = Ntrain,
although other choices are possible and, in some cases, more effective [10]. In
random forest θ also includes a vector of independent random integers between
1 and K per internal node of the decision tree. The integer K is the number of
attributes that are used to specify the decision at any given node [4]. In extra
trees, additional variables indicate the choice of the threshold used to split an
internal node in the decision tree [5].

Consider the predictors h′(·) ≡ h(·|Dtrain, θ
′) and h′′(·) ≡ h(·|Dtrain, θ

′′),
built in independent applications of the randomized learning algorithm Lθ on the
available training data Dtrain. Since θ

′ and θ′′ are independent random variables,
h′(·) and h′′(·) are independent random functions. Hence, when conditioned to
the training data, the corresponding predictions for a particular test instance x
are also independent random variables

P(h′(x) = y′, h′′(x) = y′′) = P(h′(x) = y′)P(h′′(x) = y′′) , (1)

where y′, y′′ ∈ Y are any pair of class labels. In consequence, their prediction
errors on a fixed test instance (x, y) are also independent

P(h′(x) �= y, h′′(x) �= y) = P(h′(x) �= y)P(h′′(x) �= y) . (2)

By contrast, the average prediction error will in general be dependent

Ex,y [P(h′(x) �= y, h′′(x) �= y)] = Ex,y [P(h′(x) �= y)P(h′′(x) �= y)]

�= Ex,y [P(h′(x) �= y)]Ex,y [P(h′′(x) �= y)] . (3)

These relations are valid for any classification problem and for any parallel classi-
fication ensemble in which the individual classifiers are generated in independent
applications of a randomized learning algorithm.
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Fig. 1: Empirical estimates of the joint probability of class label predictions by
two classifiers from a random forest ensemble in the classification problem Breast
Cancer.

We now illustrate the independence of the predictions of the individual en-
semble classifiers in the binary classification problem Breast Cancer from the
UCI repository [2] using a random forest ensemble [4]. Similar results should be
obtained for any prediction problem and for any parallel randomized ensemble.
The experiments consist in generating 100 random partitions of each dataset
into a training set and a test set of equal size. For each train and test partition,
a random forest ensemble of T = 1000 trees is generated. The parameters used
for the selection of the random splits in the internal nodes of the decision trees
were set to their default values. The estimate of the joint prediction probability
(left-hand side of (1)) is the fraction of counts that consecutive pairs of classi-
fiers in the ensemble predict the specified pair of class labels. For the factorized
form (right-hand side of (1)), we first estimate the probability of predicting a
given class label using only the classifiers in the even positions of the ensemble.
We then compute the corresponding estimates with the classifiers in the odd
positions of the ensemble. The factorized estimator is the product of these two
probabilities for each pair of class labels. Assuming that the independence hy-
pothesis holds, the empirical estimate of the joint distribution and the factorized
estimate should agree. Fig. 1 shows the 500 estimates obtained for each pair of
class labels. The points in these plots correspond to the prediction probability
on a given test instance for two random predictors using the joint estimator (hor-
izontal axis) and the factorized estimator, which assumes independence (vertical
axis). In all these plots, the points are aligned along the diagonal, within sam-
ple fluctuations. Therefore, both estimators of the joint prediction probability
agree. This agreement illustrates the fact that the predictions of the individual
ensemble classifiers are independent random variables.

In these experiments we also compare the estimates of the joint error proba-
bility error of two different classifiers using the joint estimator and the factorized
estimator. The results are displayed in Fig. 2: The left plot compares the two
estimates of the joint probability of error on individual test instances (2). The
right plot presents the corresponding comparison for the average error (3). These
graphs illustrate the fact that the prediction errors on individual test instances
are independent. By contrast, the joint probability of the average prediction
error does not factorize, which signals the presence of strong dependencies.
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Fig. 2: Empirical estimates of the joint probability of individual (left plot) and
average (right plot) prediction errors by two classifiers from a random forest
ensemble in the classification problem Breast Cancer.

3 Identifying Examples that are Difficult to Classify

Consider a binary classification problem Y = {y1, y2}. Assume that a parallel
randomized ensemble composed of T predictors has been built. Let T = (T1 T2)
be the random vector that encodes the ensemble predictions for a given instance
x, where T1 (T2) is the number of ensemble classifiers that predict class y1 (y2)
and T1 + T2 = T . As a consequence of the independence of the predictions of
different classifiers, this vector follows a binomial probability distribution

P(T |π(x)) = T !

T1!T2!
π1(x)

T1π2(x)
T2 , (4)

where the components of the random probability vector π(x) = (π1(x) π2(x)),
π1(x)+π2(x) = 1, are the probabilities that a classifier from the ensemble assigns
to the data instance x the label y1 and y2, respectively. The values of these
probabilities depend on the algorithm used to build the base learners, on the
particular classification problem and on x, the instance considered. Assuming
that majority voting is used, the probability that an ensemble of size T assigns
class label y ∈ Y to instance x is the sum of (4) over all the ensemble predictions
in which that class receives more votes. In particular, for class y1

P(ŷT = y1|T,π(x)) =
∑

T ;T1>T2

P(T |π(x)) = Iπ1(x)

(
�T
2
�+ 1, T − �T

2
�
)

, (5)

where Ix(a, b) is the regularized incomplete beta function [1]. The classification
boundary is defined by the set of examples x for which π1(x) = π2(x) = 1/2. For
these examples the predictions given by the ensemble are equivalent to random
guessing because P(ŷT = y1|T, 1/2) = 1/2, ∀T > 0. Therefore, the instances
that are close to this decision boundary are more likely to be misclassified. Fig. 3
displays the prediction error rate for the test instances as a function of the
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Fig. 3: Error rate as a function of π̂� = min(π̂1, π̂2).

empirical estimates of the probability of the majority class π̂� = min(π̂1, π̂2) ∈
[0, 1/2] (π̂i = Ti/T, i = 1, 2) for the Breast Cancer and Pima datasets, using a
random forest ensemble. The results for other datasets and for other randomized
parallel ensembles (e.g. random forests) are similar. The value 1/2−π̂� measures
the distance to the classification boundary in the space of class votes. From these
plots it is apparent that the test error tends to be larger for instances with higher
values of π̂�, which reflects the fact that the difficulty of classification increases
with the proximity of the instances to the decision border. In fact, the error
rates approaches 50% for π̂� ≈ 1/2. To identify the instances that are close to
the decision boundary, which, for this reason, are difficult to classify, we design
a binomial test based on the vector of predictions T for the test instance x. The
null hypothesis for this test is π1(x) = π2(x) = 1/2. The corresponding p-value
is the probability of observing a vector of predictions more unlikely than the one
actually observed (T = (T1 T2)) assuming that the null hypothesis holds

p-value = 2I1/2 (T −min(T1, T2), 1 + min(T1, T2)) . (6)

When (6) is above 5%, x is identified as an example that is difficult to classify, in
the sense that the classification by the ensemble will be close to random guessing
(i.e. ≈ 50% chance of error). For T = 1000, this occurs when min(T1, T2) ≥ 469.

To assess the effectiveness of the test, we report the results of experiments
in four binary classification problems from the UCI repository [2] (Breast Can-
cer, Ionosphere, Sonar and Pima), using random forests [4]. The experimental
protocol described in the previous section is used to generate random train/test
partitions of equal size and to build the random forest ensembles (T = 1000).
Then, the instances whose p-value is above 5% are identified as being close to
the decision borders and, in consequence, difficult to classify. The fraction of
such instances are displayed in the second column of Table 1. Finally, the er-
ror rate on these instances (3rd column) is compared with the error rates on
the remaining instances (4th column) and the global error rates (5th column).
Analyzing the results in this table one sees that the prediction error on the set
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Table 1: Properties of the test instances identified by the statistical test as being
potentially difficult to classify. The results displayed are averages over different
train/test partitions. The corresponding standard deviations are displayed after
the ± symbols.

Dataset % difficult Error difficult Error rest Error total

Breast Cancer 0.6±0.4 46.6±37.4 2.7±0.7 3.0±0.7
Ionosphere 1.5±1.0 43.4±36.1 6.2±1.5 6.8±1.6
Pima 25.9±1.2 49.8±9.9 22.5±1.7 24.1±1.6
Sonar 9.5±3.0 47.5±16.6 16.9±4.7 19.9±4.5

of difficult instances is significantly larger than the error in the set of the re-
maining instances and in the whole test set. Furthermore, the error rates of the
identified difficult instances are close to 50% (i.e. random guessing). The large
values of the standard deviation for these rates are consistent with the expected
distribution of the errors. These results illustrate the validity of the binomial
test to identify difficult instances for classification.

In summary, we have illustrated the fact that in randomized parallel en-
sembles the predictions of different ensemble classifiers on a given instance are
independent random variables. Taking advantage of this independence we have
designed a statistical test to identify instances that are potentially difficult to
classify. Experiments in several classification problems illustrate the validity
of the analysis. The usefulness of this test in the design of robust boosting
algorithms is currently under investigation.
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