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Tina Geweniger1,2, Marika Kästner2, Mandy Lange2, Thomas Villmann2

1 - Johann Bernoulli Institute for Mathematics and Computer Science,
University of Groningen, The Netherlands

2 - Computational Intelligence Group, University of Applied Sciences Mittweida,
Technikumplatz 17, 09648 Mittweida, Germany

Abstract. We propose an extension of the Conn-Index to evaluate fuzzy
cluster solutions obtained from fuzzy prototype vector quantization, whereas
the original Conn-Index was designed for crisp vector quantization mod-
els. The fuzzy index explicitly takes the fuzzy assignments resulting from
fuzzy vector quantization into account. This avoids the information loss
which would occur if the original crisp index is applied to fuzzy solutions.

1 Motivation

Prototype based vector quantization (VQ) is an approved method to compress
and cluster very large data sets. Thereby, the data are represented by a much
smaller number of prototypes. If each data point is uniquely assigned to one
prototype, it is called crisp clustering. Famous methods are c-Means [1], Self-
Organizing Maps (SOM) [2] and Neural Gas (NG) [3]. Yet, in practical appli-
cations the clusters are often overlapping. For this kind of data fuzzy clustering
methods have been developed, e. g. Fuzzy c-Means (FCM) [4] and Fuzzy SOM
(FSOM) [5]. For these methods each data point is partially assigned to each
prototype. The FSOM is an extension of the FCM taking the neighborhood co-
operativeness into account. Thereby, the neighborhood is bound to an external
topological structure like a grid as known from SOM. The new approach called
Fuzzy NG (FNG) [6] introduced in Sec. 2 combines the FCM with the NG using
the dynamic neighborhood cooperativeness as known from NG [3].

Clustering in general is an ill-posed problem and it is difficult to validate a
cluster solution. There exist a number of validity measures based on separa-
tion and compactness, e. g. Partition Entropy, Xie-Beni-Index, and Fukuyama-
Sugeno-Index [7]. They were originally developed to verify the correct number of
prototypes assuming that each cluster is represented by exactly one prototype.
Yet very large data sets require a higher number of prototypes to represent the
data and the above mentioned measures cannot be used. Taşdemir & Merényi
proposed the Conn-Index [8], which is suited to evaluate crisp clusterings, where
each cluster contains more than one prototype. This Conn-Index takes the neigh-
borhood structure between the learned prototypes into account to transfer the
information of the full data set to the cluster validation process. We propose a
modification of the Conn-Index for fuzzy cluster solutions in Sec. 3.

Further, we show that the new Fuzzy Conn-Index can be successfully applied
to judge cluster solutions based on fuzzy VQ algorithms. We demonstrate this
for an artificial and a real world data set. To obtain the cluster solutions for
the real world example we apply Fuzzy Neural Gas (FNG) [6] and subsequent
clustering of the prototypes by Affinity Propagation (AP) [9].
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2 Fuzzy VQ and subsequent clustering of prototypes

The Fuzzy Conn-Index requires that the data set is represented by prototypes,
which are obtained by a fuzzy VQ method and subsequently clustered. For the
fuzzy VQ we use the FNG as a powerful fuzzy VQ method, whereas for the
clustering the established AP algorithm is applied.

We now briefly introduce the recently published FNG [6], which can be de-
rived directly by combining the well-known NG and the FCM. For that purpose
the FCM cost function is equipped with a dynamic neighborhood between the
prototypes as introduced for the NG. Both methods, FNG and FCM, are proto-
type based vector quantizers, where prototypes W = {wj}nj=1 ⊂ RD represent

the data set V = {vi}Ni=1 ⊆ RD with n� N . The cost function of the FCM is

EFCM (U, V,W ) =
n∑
j=1

N∑
i=1

(uij)
m
d (vi,wj)

2
(1)

with m ∈ (1,∞) as the fuzziness parameter which is typically set to m =
1.2, . . . , 2 [10]. The fuzzy assignments uij ∈ U ⊆ [0, 1]N×n describe the mem-
bership of data point vi to prototype wj . If

∑n
j=1 uij = 1 holds, then the

assignments are probabilistic, otherwise possibilistic. The Euclidean distance is
usually used as dissimilarity measure d (vi,wj), but other choices are possible.
In a variant of the NG the local costs for mapping the data point vi to a certain
prototype wj can be defined as

lcNGσ (i, j) =

n∑
l=1

hNGσ (j, l) · d (vi,wl)
2

(2)

taking into account the dynamic neighborhood structure according to

hNGσ (j, l) = cNGσ · e

(
− (rkj(wl,W))2

2σ2

)
. (3)

The winning ranks rkj of each prototype wj are calculated by

rkj (wl,W ) =

n∑
k=1

Θ (d (wl,wj)− d (wl,wk)) . (4)

Θ(x) is the Heaviside function, where Θ(x) = 0 iff x ≤ 0 and 1 else [3]. The
value σ > 0 is the neighborhood range and cNGσ assures that

∑
l h
NG
σ (j, l) = 1

[3]. Note that the prototype neighborhood here differs from the neighborhood
in original NG which is based on the winner ranks according to the data.

Now the FNG is obtained by replacing the quadratic distances d(vi,wj)
2 in

eq. (1) with the local costs (2) from the NG. The update of the prototypes and
the fuzzy assignments of the FNG now include the neighborhood function (3)
[6]. Using the Euclidean distance we get

wj =

∑N
i=1

∑n
l=1(uil)

m · hNGσ (j, l) · vi∑N
i=1

∑n
l=1 (uil)

m · hNGσ (j, l)
(5)

ui,j =
1∑n

l=1

(
lcNGσ (i,j)
lcNGσ (i,l)

) 1
m−1

. (6)
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3 Generalization of the Conn-Index — Fuzzy Conn-Index

The Generalized Conn-Index C [11], which is based on the Conn-Index proposed
by Taşdemir & Merényi [8], is a validity measure to evaluate clusterings of
very large data sets V = {vi}Ni=1 ⊆ RD, which were partitioned using a prototype
based VQ scheme with the prototype set W = {wj}nj=1 ⊂ RD. Thereby it
is presumed that each of the K clusters Ωk is represented by more than one
prototype. Following Taşdemir & Merényi the index balances the overall
cluster compactness and separation by combining the inter-cluster connectivity
Cinter ∈ [0, 1] and the intra-cluster connectivity Cintra ∈ [0, 1]

C = Cintra · (1− Cinter) . (7)

Thereby, Cintra measures the compactness of the clusters and Cinter evaluates
the separation between them. The calculation of Cintra is based on the cumula-
tive adjacency matrix

A =
N∑
l=1

ψ (vl) (8)

with elements aij and where the ψ (vl) are n×n zero matrices except the row vec-
tor rs0(vl) corresponding to the best matching protoype ws0(vl) of the regarded
data point vl with

s0 (vl) = argminj (d (vl,wj)) (9)

where d(vl,wj) is the same dissimilarity measure as used for the vector quanti-
zation. The vector rs0(vl) is also called response and is affiliated with the ranks
of all other prototypes with respect to vl. In particular, each vector element
ri (vl) corresponding to the winner rank of the ith prototype is defined as

ri (vl) = ϕ (rki (vl,W )) (10)

where rki(y) is the rank function (4), but now based on the distances between
a given data point and a prototype. We explicitly remark, that the rank of the
winning prototype ws0(vl) obtained from (9) is zero. Further for the (q + 1)th
winner wsq(vl) the rank is q. The function ϕ (x) is arbitrary monotonically
decreasing, e. g. the exponential function. Thus, the Generalized Conn-Index
(7) takes also higher winning ranks into account in contradiction to the original
Conn-Index [8], where only the first and second best matching prototypes ws0(vl)
and ws1(vl) are considered. Yet, the Generalized Conn-Index comprises the
original Conn-Index by setting

ϕ(rki (vl,W )) =

{
1 for rki (vl,W ) = 1

0 else
(11)

The compactness value Cintra is now the average of the local Cintra(k) over all

K clusters Ωk, Cintra = 1
K

∑K
k=1 Cintra(k), where

Cintra (k) =

∑
i,j|i6=j {aij | wi,wj ∈ Ωk}∑
i,j|i6=j {aij | wi ∈ Ωk}

(12)
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is the ratio of the prototype connections within cluster k to all connections from
and between the prototypes describing cluster k.

For the inter-cluster connectivity Cinter the connectivity matrix C = AT +A
is required. Their elements cij can be interpreted as the dissimilarities between
the prototypes, and hence, implicitly contain information about the local data
density according to the magnification property [12]. The inter-cluster connec-
tivity Cinter is the average of the values Cinter(k) analoguously to Cintra(k)
where

Cinter (k) = max
1≤l≤K,k 6=l

Cinter (k, l) (13)

is the maximum of the local inter-cluster connectivities Cinter (k, l)

Cinter (k, l) =

{
0 if Sk,l = ∅∑

i,j|i6=j{cij |wi∈Ωk,wj∈Ωl}∑
i,j|i6=j{cij |wi∈Sk,l}

if Sk,l 6= ∅
(14)

The set Sk,l describes the neighborhood relations between the cluster Ωk and Ωl
based on the contained prototypes Sk,l = {wi | wi ∈ Ωk ∧ ∃wj ∈ Ωl : aij > 0},
i. e. the inter-cluster connectivity Cinter (k, l) evaluates the separation of cluster
Ωk from cluster Ωl.

Generally, high values of the (Generalized) Conn-Index C (7) indicate a good
clustering. That implies high values for the compactness Cintra vs. small values
for the separation Cinter are desired.

According to the used winner rank function the Conn-Index assumes a unique
crisp winner ranking. Thereby, as mentioned above, the rank function (10) used
in the Generalized Conn-Index (7) reflects the topological structure of the data.
In fuzzy VQ this information is implicitly contained in the fuzzy assignments
uij of the data to the prototypes. Thus, in the new Fuzzy Conn-Index CF the
fuzzy assignments are considered instead of the prototype ranks. Particularly
we redefine the response vector rs0(vl) by

ri(vl) = uli (15)

instead of eq. (10). In this way fuzzy decisions in vector quantization can
directly be used to calculate a cluster validation index. Thereby, the structural
methodology of the original Conn-Index is preserved in the Fuzzy Conn-Index.

4 Experiments

To demonstrate the capability of the new Fuzzy Conn-Index in comparison to
the crisp version we consider an artificial and a real world data set.

Artificial dataset ’Smiley’. This two-dimensional data set called Smiley
consists of three Gaussian clouds with varying variances and one curved cloud.
Three of them are overlapping and one is well separated from the others (see
Fig. 1). We distributed 17 prototypes to describe the data. These positions are
fixed for the following experiments. We varied the fuzziness ranging from crisp
(equivalently to m = 1, [10]) to severe fuzziness (m = 3): For the crisp case
mapping rule (9) was used for the determination of the assignments, whereas
for fuzzy assignments eq. (6) was applied. In the latter case the calculation
was done taking the limit σ → 0. Subsequently, we clustered the prototypes to
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Conn-Index Fuzzy Conn-Index
(crisp) 1.1 1.25 1.5 1.75 2.0 3.0

C 0.56 0.80 0.77 0.65 0.51 0.40 0.187
Cintra 0.783 0.798 0.779 0.682 0.579 0.491 0.316
Cinter 0.283 0.004 0.013 0.050 0.110 0.179 0.409

Table 1: Values for the original and the Fuzzy Conn-index for the artificial Smiley
data set. The Fuzzy Conn-Index based on varying values of the fuzziness parameter
m.

Fig. 1: Smiley with clustered prototypes
(red ?, green ×, blue +, purple o)
Colored image can be obtained from the authors.

Fig. 2: Coffee with clustered prototypes
(red dotted, green dashed, blue lines)
Colored image can be obtained from the authors.

approximate the data clouds. Thus, each cluster is represented by more than
one prototype, i. e. the respective requirement of the Conn-Index is fulfilled.
Evidently, the fuzzy cluster solutions should be more adequate because of the
overlapping data clouds.

The original and the Fuzzy Conn-Index were compared according to their
performance and suitability, whereby the original Conn-Index was used for crisp
clusterings. The Fuzzy Conn-Index takes the fuzzy assignments uij of the data
points to the prototypes into account. Comparing the values in Tab. 1 we
observe that the Fuzzy Conn-Index yields better results for most of the fuzzy
cluster solutions reflecting the fuzziness of the data clouds. This can mainly be
dedicated to a lower separation value Cinter, i. e. the incorporation of fuzziness
leads to a better description of the cluster separability. However, too strong
fuzziness neglects this effect. Hence, a careful choice of the fuzziness parameter
m, which should resemble the data overlap as truly as possible, is mandatory.

Real world data set ’Coffee’. This data set consists of hyper spectra of ten
different untreated powder coffee sorts. The spectral measurement was done
using a hyper spectral camera (HySpex SWIR-320 m-e, Norsk Elektro Optikk
A/S) with the short range infra-red spectral range of 970nm to 2.500nm with a
resolution of 6nm yielding 256 bands per spectrum.1One hundred spectra were
generated for each coffee sort. A representative subset of the spectra is depicted
in Fig.2. We trained crisp NG and the fuzzy FNG with 15 prototypes for each.
The latter one with varying fuzziness parameter m, see Tab.2. An AP prototype
clustering was performed resulting in three clusters for each run. Comparing the
values obtained by applying the original Conn-Index to fuzzy clusterings (m > 1)
with the respective Fuzzy Conn-Index values we notice significant discrepancies.
This reflects the information loss which occurs during crispification of fuzzy
values required for the calculation of the original Conn-Index. Again it can be

1Special thanks to Udo Seiffert and his team from the Fraunhofer Institute IFF Magdeburg
for the collection of the data.
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NG FNG
m = 1.25 m = 1.5 m = 2.0

C 0.74
Cc = 0.905

0.61
Cc = 0.846

0.69
Cc = 0.858

0.49
Cc = 0.890

Cs = 0.187 Cs = 0.274 Cs = 0.201 Cs = 0.452

Cf − −
0.77

Cc = 0.781
0.72

Cc = 0.757
0.63

Cc = 0.738

− Cs = 0.018 Cs = 0.045 Cs = 0.144

Table 2: The original Conn-Index C and the Fuzzy Conn-Index Cf with Cintra = Cs

and Cinter = Cc for the cluster solutions of NG and FNG for the Coffee data.

observed that the choice of the fuzziness should be considered carefully. Differing
from the frequently applied value m = 2 here a lower fuzziness parameter seems
to perform better, as it was also obtained for the artificial data.

5 Conclusion

In this paper we extended the original cluster evaluation Conn-Index [8], de-
signed for the evaluation of cluster solutions obtained from crisp prototype based
vector quantization. This extension takes fuzzy vector quantization models into
account and is based on the Generalized Conn-Index proposed in [11]. The new
Fuzzy Conn-Index performs better for fuzzy cluster solutions than applying the
original crisp variant to them. This is due to the information loss occurring in
the calculation of the original Conn-Index if applied to fuzzy clusterings, since
the new index takes explicitly all the fuzzy information provided by the fuzzy
assignments into account. As the original, the Fuzzy Conn-Index requires more
than one prototype per cluster. Further, the experiments have shown that the
choice of the fuzziness parameter in the vector quantization has to be considered
very carefully.
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