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Abstract.  Nonparametric dimensionality reduction (DR) techniques
such as locally linear embedding or t-distributed stochastic neighbor (t-
SNE) embedding constitute standard tools to visualize high dimensional
and complex data in the Euclidean plane. With increasing data volumes
and streaming applications, it is often no longer possible to project all data
points at once. Rather, out-of-sample extensions (OOS) derived from a
small subset of all data points are used. In this contribution, we propose
a kernel mapping for OOS in contrast to direct techniques based on the
DR method. This can be trained based on a given example set, or it
can be trained indirectly based on the cost function of the DR technique.
Considering t-SNE as an example and several benchmarks, we show that
a kernel mapping outperforms direct OOS as provided by t-SNE.

1 Introduction

In the last years, many nonlinear dimensionality reduction techniques have been
developed which allow to project high-dimensional data points to the Euclidean
plane preserving as much structure of the original data as possible, see e.g.
[2, 8, 12]. This way, humans can directly inspect the data, thereby relying on
their astonishing cognitive capabilities in visual perception. An increasing size
and complexity of the data sets makes interactive techniques more and more
common, where humans focus on relevant parts or add additional information
on demand, see e.g. [7]. In these cases, the full data set is often not available a
priori, moreover, very fast visualization of the selected information is required.

Some of the most powerful techniques such as t-distributed stochastic neigh-
bor embedding (t-SNE) [12] scale quadratically with the size of the data, thus
they are infeasible for large data sets. Due to this fact, visualization has to rely
on subsamples to arrive at a mapping in reasonable time. Unlike classical tech-
niques such as principal component analysis, however, many modern nonlinear
dimensionality reduction techniques do not offer an explicit embedding function
[8]. Rather, to extend cost function based DR methods to new data points, for
example, requires the minimization of a cost function [2]. Such out-of-sample ex-
tensions are computational costly and their quality, i.e. the generalization ability
of such projections to novel data points, is not clear at all.

Due to this fact, several approaches have been proposed to extend nonlinear
DR to explicit mappings. The approach [1] proposes interpolation techniques
for multidimensional scaling and the generative topographic mapping. The con-
tribution [10] considers visualization by means of a kernel function optimized
according to a quadratic cost function. In the approach [11] t-SNE is combined
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with deep feedforward networks to arrive at a highly nonlinear embedding func-
tion. Recently, a variety of well-known non-parametric nonlinear DR, techniques
has been put into a general framework based on the notion of cost functions
[2]. Based on this formulation, an extension of the techniques to non-parametric
out-of-sample extensions (OOS) by means of optimization as well as an exten-
sion to explicit OOS mappings by means of the integration of a parameterized
function has been proposed.

In this contribution, we propose explicit kernel embeddings for OOS of DR
techniques. Relying on t-SNE as an exemplary DR technique, we propose three
different ways to train the mapping: an explicit solution can be derived from a
simple interpolation given a fixed sample set of projected points. Alternatively, a
kernel mapping can be obtained based on a sample set by incorporating regular-
ization in the form of support vector machine regression. Finally, the parameters
of the kernel function can be optimized according to the cost function of the DR
method based on a sample set. We show that the proposed techniques arrive at
reasonable kernel mappings which outperform direct OOS in most cases.

2 The t-Distributed Stochastic Neighbor Embedding and
Out-of-Sample Extension

The t-distributed stochastic neighbor embedding (t-SNE) has been proposed in
[12] as a highly flexible DR technique which tries to preserve probabilities as
induced by pairwise distances in the data and projection space. Assume data
points x; € R™ are given. The Euclidean distance induces pairwise probabilities
p;; which are given by Gaussian probabilities. The data correspond to projec-
tions y; € R%, where, typically d = 2, which also induce pairwise probabilities Qij
which are given by the student-t distribution of the distances of projected points.
The t-SNE aims at finding projections y; such that the difference of these prob-
abilities as measured by the Kullback-Leibler divergence of these two probability
distributions KL(P||Q@) is minimized, whereby typically a gradient technique is
used for optimization, see [12] for details. Obviously, this technique does not
provide an explicit DR mapping x — y = y(x). However, a direct OOS exten-
sion to new points is possible provided a fixed set of data {(x;,y;)|i =1,...,N}
has been trained. These projections are fixed, and a new data point x is mapped
to the coefficient vector y such that the costs KL(P||Q) are minimized where
P and @ include the novel pair (x,y). A gradient method yields coefficients y
as a local optimum of these costs. See [2] for an explicit formalization of the
resulting formulas. We refer to this method by direct OOS (refer to as oos in
Tab. 1) in the following.

3 Kernel t-Distributed Stochastic Neighbor Embedding

Instead of a direct OOS, we propose an explicit OOS mapping given by a kernel

function:
x o y(x) = 3 ark(xi, %)
l

532



ESANN 2012 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

where oy € R? and x; is a fixed sample of data points. k is an appropriate kernel
function such as the Gaussian kernel (refer to as rbf) or the recently proposed
‘nearly’ parameterless ELM kernel (refer to as elm) [5]. The parameters o; have
to be determined based on a given training sample x; of points. We propose
three different techniques to determine these mapping parameters:

Mean square interpolation (refer to as itp): First, the sample points x;
are mapped to projections y; by means of t-SNE. Then, mapping parame-
ters q; are determined to minimize the sum squared error of these projec-
tions y; and the function values y(x;). This allows an explicit solution of
the matrix A of parameters a; as

A=Ky

where K is the Gram matrix with entries k(x;,x;), Y denotes the matrix
of projections y;, and K~! refers to the pseudo-inverse. Note that fast
iterative alternatives would be possible.

Regularized regression (refer to as svm): Similar to mean square interpo-
lation, sample points x; are mapped to projections y; by means of t-SNE.
Mapping parameters «; are determined by approxmating the regression
task provided by the set {(x;,y;)|i=1,..., N} with a standard SVM (we
use an SMO implementation provided by [3] and the standard e-tube.)

Kernel mapping by means of the t-SNE cost function (refer to as k):
We optimize the parameters oy such that the projections y(x;) of the given
sample set are optimum in the sense of the t-SNE cost function. Hence
we consider the costs F := KL(P||Q) where @ is determined based on the
projections y(x;) provided by the kernel mapping. Optimization can be
performed by gradient techniques where the gradient with respect to «; is

OF B
Doy A3 (i — ai) L+ lyi — vl 7 (s — yi)k(xi, x0).
i

See [2] for a more detailed description of the general technique.

4 Experiments

We test the techniques using four benchmark sets with different characteristics:

car: The car data from the UCI repository [4] comprises 1728 points described
by six discrete features with rangesin 1, ...k (k is up to 6) such as purchase
costs, maintenance costs, etc.

coil: The COIL-20 data set [12] consists of 72 gray scaled images (128x128
pixels) of 20 objects taken from different angels.

olivetti: The Olivetti faces data set from AT&T [12] consists of 400 images
(64x64 pixels) of 40 different persons taking under different conditions.
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henon: The Henon data set consists of 5000 data points in three dimensions
forming a chaotic attractor as described by the corresponding dynamical
equations which constitute a generalization of the popular Henon attractor
to three dimensions [6].

We compare the result of the different techniques when training on different
sized subsets of the data for OOS extensions. The width of the Gaussian kernel
is taken as mean distance of a data point to its fifth closest neighbor.

Evaluation of the projection is done by means of the local quality measure as
proposed in the approach [9]. The results of a repeated ten-fold cross-validation
with five repeats are reported in Tab. 1. A corresponding quality graph is de-
picted in Fig. 1 for one example.

Interestingly, the direct out-of-sample extension provided by t-SNE is inferior
in all but three cases. Hence, in addition to the direct availability of an explicit
mapping, kernel dimensionality reduction mapping seems to improve the projec-
tion quality. A simple interpolation on a given training set is surprisingly good,
the same holds for the training of a kernel mapping by means of a direct integra-
tion into the t-SNE cost function. In contrast, SVM approximation yields good
results in only three out of twelve cases. This picture is also confirmed when
inspecting the full quality graph as compared to the single value provided by the
local quality, as exemplarily shown in Fig. 1, whereby the precise ordering is a
bit more diverse depending on which neighborhood size k is considered.

5 Discussion

We have proposed a method to obtain an explicit nonlinear kernel mapping for di-
mensionality reduction based on t-SNE. Interestingly, including a kernel mapping
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Fig. 1: Quality graph for the Henon data on 90% training data.
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can improve upon direct out-of-sample extension in almost all cases. Further, a
very simple strategy to train the map by simple least squares minimization on a
given training set gives surprisingly good results. Naturally, the techniques can
be extended in similar form to alternative nonlinear non-parametric dimension-
ality reduction techniques such as locally linear embedding or Isomap [8]. Case
studies for different approaches will be the subject of future work.

Alternative techniques to extend nonlinear dimensionality reduction to large
data sets include, among others, techniques which naturally provide an embed-
ding mapping (such as [13, 14]), which are based on landmark techniques [12], or
approximations [15]. Unlike our approach, these techniques have been proposed
in combination with specific non-linear dimensionality reduction methods only.
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data set car coil olivetti henon
% used for training || 01 | 05 | 0.9 01 [ 05 | 09 01 [ 05 | 09 01 | 05 | 09
os 018 | 029 | 035 || 024 | 0.62 | 0.65 || 0.19 | 0.44 | 025 || 0.49 | 058 | 0.56
(0.02) | (0.02) | (0.05) || (0.06) | (0.02) | (0.02) || (0.10) | (0.05) | (0.03) || (0.03) | (0.02) | (0.03)
itp(ehi) 0.30 | 0.34 | 0.39 || 044 | 0.58 | 0.61 || 029 | 0.41 | 0.41 || 0.72 | 0.62 | 0.59
(0.01) | (0.02) | (0.02) || (0.04) | (0.01) | (0.01) || (0.08) | (0.03) | (0.03) || (0.02) | (0.02) | (0.02)
028 | 031 | 032 || 043 | 051 | 055 | 0.31 | 0.40 | 0.37 || 0.57 | 0.35 | 0.29
svm(rbf) (0.01) | (0.00) | (0.03) || (0.02) | (0.01) | (0.01) || (0.02) | (0.03) | (0.04) || (0.01) | (0.04) | (0.02)
(rbi) 028 | 0.26 | 0.40 || 0.47 | 057 | 057 | 0.37 | 0.41 | 0.35 || 0.71 | 0.62 | 0.60
(0.02) | (0.01) | (0.02) || (0.01) | (0.02) | (0.03) || (0.03) | (0.03) | (0.05) || (0.04) | (0.02) | (0.01)
itp(clm) 0.30 | 0.37 | 037 || 042 | 055 | 059 || 027 | 0.41 | 0.40 || 0.80 | 0.72 | 0.70
(0.02) | (0.01) | (0.03) || (0.05) | (0.01) | (0.01) || (0.08) | (0.02) | (0.05) || (0.02) | (0.02) | (0.02)
svm(clm) 028 | 031 | 031 || 043 | 048 | 051 | 031 | 0.41 | 0.39 || 0.80 | 0.63 | 0.55
(0.02) | (0.01) | (0.01) || (0.03) | (0.01) | (0.02) || (0.02) | (0.02) | (0.05) || (0.02) | (0.06) | (0.03)
k(elm) 026 | 028 | 024 || 0.46 | 044 | 042 | 0.40 | 0.37 | 0.37 || 050 | 0.58 | 0.58
(0.02) | (0.01) | (0.03) || (0.01) | (0.03) | (0.02) || (0.02) | (0.04) | (0.04) || (0.10) | (0.05) | (0.06)

Table 1: Local quality obtained by the different OOS techniques in a cross-validation for different training set sizes, the result
is evaluated by means of a cross-validation, the standard deviation is given in parenthesis. For each setting, the best two

results are depicted in boldface.
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