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Emilio Soria-Olivas, Josep Guimerá-Tomás, Marcelino Mart́ınez-Sober

and Antonio J. Serrano-López
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Abstract. Extreme learning machine (ELM) is an efficient learning
algorithm for single-hidden layer feedforward networks (SLFN). This paper
proposes the combination of ELM networks using a regularized committee.
Simulations on many real-world regression data sets have demonstrated
that this algorithm generally outperforms the original ELM algorithm.

1 Introduction

Extreme learning machine (ELM) is an efficient learning algorithm for single-
hidden layer feedforward networks (SLFN) recently proposed in [1]. It dra-
matically reduces the learning time by means of randomly selecting weights and
biases for hidden nodes instead of adjust them iteratively, the common approach
employed by gradient-descent methods. ELM has shown a good generalization
performance in several real-world applications. However, an issue with ELM is
that as some parameters are randomly assigned and remain unchanged during
the training process, they can be non-optimum and the network performance
may be degraded. It has been demonstrated that combining suboptimal models
is an effective and simple strategy to improve the performance of each one of
the combination members [2]. We propose to use an ensemble of ELM networks
whose parameters are initialized independently and combine their predictions to
generate a final output.

There are different ways to combine the output of several models [2]. The
simplest way of combining models is to take a linear combination of their outputs.
Nonetheless, some researchers have shown that using some instead of all the
available models can provide better performance. The main difficulty of this
approach is the selection of the models that should be part of the committee.
This paper aims to investigate the use of regularization methods in order to
select automatically the committee members.

The remaining of this paper is organized as follows. Section 2 briefly presents
the ELM algorithm. The details of the proposed method are described in Sec-
tion 3. Section 4 introduces the experiments and the used data sets. Results
and discussion are presented in Section 5. Finally, Section 6 summarizes the
conclusions of the present study.
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2 Extreme Learning Machine

ELM was proposed by Huang et al. [1]. This algorithm makes use of the SLFN
architecture. In [1], it is shown that the weights of the hidden layer can be
initialized randomly, thus being only necessary the optimization of the weights
of the output layer. That optimization can be carried out by means of the Moore-
Penrose generalized inverse. Therefore, ELM allows reducing the computational
time needed for the optimization of the parameters due to fact that is not based
on gradient-descent methods or global search methods.

Let be a set of N patterns, D = (xi,oi); i = 1 . . .N , where {xi} ∈ R
d1 and

{oi} ∈ R
d2 , so that the goal is to find a relationship between {xi} and {oi}. If

there are M nodes in the hidden layer, the SLFN’s output for the j-th pattern
is given by yj:

yj =

M
∑

k=1

hk · f (wk,xj) (1)

where 1 ≤ j ≤ N , wk stands for the parameters of the k-th element of the hidden
layer (weights and biases), hk is the weight that connects the k-th hidden element
with the output layer and f is the function that gives the output of the hidden
layer; in the case of Multilayer Perceptron (MLP), f is an activation function
applied to the scalar product of the input vector and the hidden weights. Eq.(1)
can be expressed in matrix notation as y = G·h, where h is the vector of weights
of the output layer, y is the output vector and G is given by:

G =







f (w1,x1) . . . f (wM ,x1)
...

. . .
...

f (w1,xN ) · · · f (wM ,xN )






(2)

As mentioned previously, ELM proposes a random initialization of the param-
eters of the hidden layer, wk. Afterwards the weights of the output layer are
obtained by the Moore-Penrose’s generalized inverse according to the expression
h = G† · o, where G† is the pseudo-inverse matrix.

3 Regularized ELM Committee

A committee, also known as ensemble, is a method that consists of taking a
combination of several models to form a single new model. In the case of a
linear combination, the committee learning algorithm tries to train a set of
models {s1, . . . , sP } and choose coefficients {β1, . . . , βP } to combine them as

y(x) =
∑P

i=1 βisi(x). The output of the committee on instance xi is computed
as

y(xi) =

P
∑

r=1

βrsr(xi) = sTi β, (3)

where si = [si(xi), . . . , sP (xi)]
T
are the predictions of each committee member

on xi.
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The main idea of the proposed method lies in computing the coefficients that
combine the committee members using a regularized version of least squares
regression. The regularized regression is useful in this context due to its tendency
to prefer solutions with fewer nonzero parameter values, effectively reducing the
number of committee members.

3.1 Lasso, Ridge Regression and the Elastic Net

Multiple linear regression is often used to estimate a model for predicting future
responses, or to investigate the relationship between the response variable and
the predictor variables. For the first goal, the prediction accuracy of the model
is important, while for the second goal the size of the model is of more interest.
Ordinary Least Squares (OLS) regression is known for often not performing well
with respect to both prediction accuracy and model size [6]. Several regularized
regression methods were developed the last few decades to overcome these flaws
of OLS regression, starting with Ridge regression, followed by Lasso method,
and more recently the Elastic net [3, 4].

Ridge regression and the Lasso are regularized versions of least squares regres-
sion using penalties on the coefficient vector. Recently, [5] proposed the Elastic
net to reach a compromise between the Lasso and Rigde regression. The Elastic
net also combines shrinkage and variable selection, and in addition encourages
grouping of variables [6].

We consider the usual setup for linear regression with only one output, for
the sake of simplicity. We have a response variable o ∈ R and a predictor
vector s ∈ R

Q, and we approximate the regression function by a linear model
E(o|s) = β0 + sTβ, where the input to the model, s, is formed by the outputs
of the committee members. We consider N observation pairs (xi,oi).

The three regularization methods for linear models can be described in a
generalized way as

min
(β0,β)∈RQ+1

[

1

2N

N
∑

i=1

(oi − β0 − sTi β)
2 + λPα(β)

]

(4)

where

Pα(β) =

Q
∑

j=1

[

1

2
(1 − α)β2

j + α|βj |

]

(5)

In the Elastic net penalty Pα is a trade-off between the ridge Regression
penalty (α = 0) and the Lasso penalty (α = 1) [6]. Thus, Ridge Regression
introduce a penalty ‖β‖2, Lasso replaces this penalty by a penalty ‖β‖, and
Elastic net introduce a penalty of the form λ1‖β‖+ λ2‖β‖

2.
The Elastic net with α = 1 − γ for some small γ > 0 performs much like

the Lasso, but removes any degeneracies and wild behavior caused by extreme
correlations. More generally, the entire family Pα creates a useful trade-off
between Ridge and Lasso.
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3.2 Selection of the regularization parameter λ

As mentioned in Section 3.1, the regularized regression methods depend on a
parameter λ. This parameter gives information about the relevance of the regu-
larization. Many methods can be applied to solve Eq. (4), here, the Coordinate
Descent method proposed in [6] was used due to its high speed compared to other

classical approaches. A freeware MATLAB
TM

toolbox that implements these al-
gorithms was used1. Following the procedure pointed out in [6], a sequence of
K values of λ decreasing from λmax to λmin on the log scale is constructed. The
values of λmax and λmin are derived from data, and a typical value of K is 100.

The Bayesian Information Criterion (BIC) [7] was used in order to select
the best model. This criterion introduces a penalty term for the number of
parameters in the model, the BIC criterion is defined as

BIC = −2 · ln(L) +M · ln(N) (6)

where:
N = the number of observations, or the sample size.
M = the number of parameters to be estimated (the number of committee

members).
L = is the value of the likelihood function for the estimated model.

4 Experiments

A total of 13 benchmark regression problems were chosen to study the perfor-
mance of the proposed approach. They were chosen due to the overall hetero-
geneity in terms of number of samples and number of variables. All data sets
were collected from LIACC2 repository, except Concrete compressive data set,
that can be found in UCI3 repository. Data sets were standardized to zero mean
and unit variance. One-third of each data set was selected randomly for validat-
ing, and the remaining for training. Some statistics of the data sets are shown
in Table 1.

The proposed approach was compared with standard ELM network and with
a committee without regularization. In the ELM network, the number of hidden
nodes was varied in order to select the optimal architecture. For each archi-
tecture, it was carried out a total of 100 different initializations of network pa-
rameters (randomly generated within the range [-1 1]). The sigmoidal additive
activation function was used.

The number of committee members was fixed to 20 for all data sets. There-
fore, both committees are initially formed by 20 ELM networks. However, in the
regularized committee, some of the members will be discarded during the learn-
ing process. In each committee, the member architecture is the same, but their
weights and biases are different (randomly generated). On the other hand, for

1www-stat.stanford.edu/∼tibs/glmnet-matlab
2http://www.liaad.up.pt/∼ltorgo/Regression/DataSets.html
3http://archive.ics.uci.edu/ml
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Data set # Attri. Samples Data set # Attri. Samples

Train Val. Train Val.

Abalone 8 2784 1393 Machine CPU 6 139 70
Ailerons 40 9166 4584 Delta ailerons 5 4752 2377
Auto price 15 106 53 Delta elev. 6 6344 3173
Bank 8 5461 2731 House Census 8 15189 7595
Boston h. 13 337 169 Kinematics 8 5461 2731
California h. 8 13760 6880 Triazines 60 124 62
Concrete c. 8 686 344

Table 1: Information about the selected data sets. Number of attributes and
number of samples for both training (two-thirds of the training data) and vali-
dation (remainder third of the data) sets.

each data set the member architecture varies and coincides with the architecture
employed by the standard ELM. Several values of the parameter α correspond-
ing with the three regularization methods were tested. Finally, α was set to 0.2
because this value provided the best overall performance.

The performance was measured in terms of the RMSE in the validation set
and the experiments were repeated 50 times. The averaged predictive error is
shown in Table 2.

5 Results

All results reported are for the validation set. For each data set, the minimum
RMSE is highlighted in bold face. As it can be observed in Table 2, the proposed
approach obtains the best general performance. In 12 of the 13 data sets, the
regularized committee provides better results than the other methods. As ex-
pected, both committee methods improve the error obtained with the standard
ELM. Moreover, in the majority of cases, the fact of employing some instead of
all the committee members provide better performance.

The improvement achieved by the regularized committee varies with the data
set. For example, compared with ELM, the RMSE improvement of the datasets
Boston housing, Concrete compressive, Machine CPU and Kinematics is more
than 15%. Regarding the regularization process, the average (over all data sets)
number of committee members discarded during the learning process is 6.83,
which corresponds with a 34.13% of the members.

6 Conclusions

In this paper, we have proposed a regularized committee formed by ELM net-
works. Based on the results, we can conclude that the performance of the stan-
dard ELM network can be outperformed using a regularized committee. Fur-
thermore, given a set of networks, it is better to build a committee that contains
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Data set # Hidden
nodes

Method

ELM Linear
committee

Regularized
committee

Abalone 40 0.6557 0.6532 0.6468
∗

Ailerons 600 0.4524 0.4183 0.4179
∗

Auto price 20 0.5567 0.5699 0.4947
∗

Bank 400 0.2047 0.1954 0.1948
∗

Boston housing 80 0.4834 0.4230 0.4088
∗

California housing 400 0.5072 0.4863 0.4855
∗

Concrete compressive 140 0.4506 0.3723 0.3654
∗

Machine CPU 25 0.3927 0.3155 0.2666
∗

Delta ailerons 80 0.5329 0.5269 0.5247
∗

Delta elevators 100 0.6033 0.5998 0.5990
∗

House census 400 0.6159 0.5930 0.5920
∗

Kinematics 400 0.4608 0.3882 0.3906
Triazines 10 1.0428 1.0460 1.0395

Table 2: Average validation RMSE (50 experiments) obtained with standard
ELM, linear committee and regularized committee for each data set. Also it is
shown the number of hidden nodes employed for each data set.

some instead of all networks. The difficulty here is to decide what networks
should be part of the committee. It has been presented a method based on
elastic net regularization in order to select the committee members.

The proposed method has been compared with standard ELM network and
a committee in 13 benchmark regression problems, and the results indicate that
the algorithm produces better results.
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