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Abstract. In this paper we present a hierarchical model of linear regression func-
tions in the context of multi–task learning. The parameters of the linear model
are coupled by a Dirichlet Process (DP) prior, which implies a clustering of re-
lated functions for different tasks. To make approximate Bayesian inference under
this model we apply the Bayesian Hierarchical Clustering (BHC) algorithm. The
experiments are conducted on two real world problems: (i) school exam score pre-
diction and (ii) prediction of ground–motion parameters. In comparison to baseline
methods with no shared prior the results show an improved prediction performance
when using the hierarchical model.

1 Introduction
In this study we consider the problem of multi–task learning [1–5], strictly speaking,
learning multiple related predictive functions, for which the assumption is that the train-
ing data for each task is not identical distributed, but that similar tasks share some in-
formation. This learning task can be stated as follows: The data are observations from
K different tasks. The data set of the k–th task has the form Dk = {(xki, yki)}nk

i=1,
where nk = |Dk| is the cardinality of the k–th data set, xki ∈ R

d is th i–th covariate of
the k–th task and yki ∈ R is the corresponding target value. Furthermore, D = (X,y)
denotes the complete data set with X = {Xk}Kk=1 and y = {yk}Kk=1. The aim in
multi–task learning is to learn function estimators fk simultaneously to share some in-
formation in an arbitrary way.

A common technique in multi–task learning to share information across tasks is
Hierarchical Bayesian modelling [1, 5], which makes the assumption that model pa-
rameters are drawn from a common prior distribution. By learning these parameters
jointly the individual tasks will interact and regulate each other. A drawback of such
a prior by reason of its modality is that the relationship between all tasks are treated
equally, but it is desirable that only similar tasks share information to permit negative
transfer. To deal with these issues we propose a nonparametric hierarchical Bayesian
model where the common prior is drawn from a DP. The DP prior induces a partitioning
of tasks with an infinite number of components, so that only similar tasks within each
cluster share the same parameterization. A similar approach was previously proposed
in the context of classification by Roy and Kaelbling [3] using a Naive Bayes classifier,
and Xue et al. [4] using logistic regression. Related to Roy and Kaelbling, we apply the
BHC [6] algorithm for performing inference in our model.

∗This work was (partly) funded by the German Research Foundation, grant DFG RI 2037/2-1.

293

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.



2 Background
In this section we give a short introduction into the topic of DP and Dirichlet Process
Mixture (DPM) models as well as an algorithm for approximate inference in DPMs.
An overview of DPs is given by Teh [7].

2.1 Dirichlet Process Mixture model

A DP is a stochastic process, whose realizations are probability distributions, i.e. it is
a distribution over distributions. The distributions drawn from a DP are discrete. Let
Θ be the latent parameters drawn from a random distribution G, which itself sampled
from a DP with a base distribution H and a positive concentration parameter α, then
the generative model can be written as θi ∼ G and G ∼ DP (α,H).

Let θ1, . . . , θk be an i.i.d. sequence drawn from G. Due to the discreteness property
of the DP, the values of draws are repeated, so the unique values of θ 1, . . . , θk are
denoted by θ�1 , . . . , θ

�
m and nj is the number of occurrences θ�

j in the random sequence.
Thus, the predictive distribution of θk+1 given θ1, . . . , θk with G integrated out can
be written as p(θk+1|θ1, . . . , θk, α,H) = 1

K+α (αH +
∑m

j=1 njδθ�
j
) which implies

the implicit clustering property of the DP [7]. The first term in the brackets of this
expression reflects the ability of the DP in creating new clusters, which is proportional
to α, while the second term reflects the fact that new samples join groups with large
samples, namely with a probability proportional to n j .

The clustering property makes the DP prior very attractive in the application field,
especially in clustering data with mixture models. Here, the parameters of the mixture
components are drawn from a DP prior. The nonparametric nature of DP translates a
mixture model with a fixed number of components to a mixture model with countable
infinite number of components. This model is widely known as DPM model. The
marginal likelihood of a DPM model [6] can be written as

p(y|X, α, φ) =
∑
z∈Z

p(z|α)
∏
j

p({yk : zk = j}Kk=1|{Xk : zk = j}Kk=1, φ), (1)

where zk is the cluster assignment variable of task k, p(z|α) =
∫
p(z|π)p(π|α) dπ

is the standard Dirichlet integral and the last term is the marginal likelihood of data
assigned to the j–th cluster. The sum over the exponential number latent partitions Z
makes exact Bayesian inference intractable. Instead of using MCMC sampling machin-
ery which may be slow to converge, we apply the BHC algorithm to make approximate
inference.

2.2 Bayesian Hierarchical Clustering Algorithm

The BHC algorithm [6] is similar to traditional agglomerative clustering, but with the
distinction that it uses a Bayesian hypothesis test as merging criterion instead of an
arbitrary distance measure. The BHC constructs a lower bound of Eq. 1, which approx-
imates the sum over the latent partitions by summing over the exponential number of
tree–consistent partitions, induced in a greedy manner by the agglomerative clustering
procedure. Figure 1(a) illustrates the notion of tree–consistent partitions.

In the following we will explain the parts of the algorithm which are relevant for
our multi–task learning model in Section 3. A detailed description of the algorithm can
be found in [6]. The complete BHC algorithm is summarized in Figure 1(b).
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1 2 3 4 5

Dl Dr

Dk

Tk

Tl
Tr

T input : data D, model p(y|x, θ), prior p(θ|φ), and α

while P (D|T ) does not significantly increase do

(1) building tree structure:
initialize: number of clusters c = K, and B = {Di}K

i=1
while c > 1 do

Find the pair Dl and Dr with argmaxk p(Hk|Dk)
Merge Dk → Dl ∪ Dr , Tk → (Tl, Tr)
Delete B → B \ {Dr , Dl}, c → c − 1

(2) learning hyperparameters by maximizing p(D|T ):
Optimize α by line search algorithm
Optimize φ by taking gradient ∂ log p(D|T )

∂φ

Fig. 1: (a) Scheme of a cluster hierarchy of tasks, where Tl and Tr were merged into Tk with the
associated data set Dk = Dl∪Dr . T denotes the root node of the tree. For example, the partition-
ing {{1, 2}, {3, 4}, {5}} and {{1}, {2}, {3, 4, 5}} are tree–consistent, while {{1, 2, 3}, {4, 5}}
does not reflect a tree–consistent partitioning. (b) Pseudocode of the BHC algorithm.

The statistical test in the merging stage is based on comparing two different hypoth-
esis. The null hypothesis Hk is that Dk is i.i.d. from the same probabilistic model.
This can be expressed simply by the marginal likelihood of the data p(D k|Hk) =∫ ∏nk

i p(yki|xki, θ)p(θ|φ) dθ, where p(θ|φ) is the prior over the latent parameters θ
with hyperparameters φ. The alternative hypothesis Hk is that Dk is generated by two
or more clusters. Due to the restriction to tree–consistent partitions the distribution can
be formulated by p(Dk|Hk) = p(Dl|Tl)p(Dr|Tr). Thus, marginal likelihood of the
BHC algorithm for a tree Tk can be written as

p(Dk|Tk) = πkp(Dk|Hk) + (1 − πk)p(Dl|Tl)p(Dr|Tr), (2)

where πk
def
= p(Hk) is the prior that Dk belongs to one cluster. Eq. 2 is a lower bound

of Eq. 1 (see [6]), if and only if πk = αΓ(nk)
dk

with dk = αΓ(nk) + dldr, where α

is the concentration parameter of the DPM and Γ(·) is the gamma function. By using
the Bayes rule, the posterior of the merged hypothesis, which is also used as merging
criterion in the BHC algorithm, is p(Hk|Dk) =

πkp(Dk|Hk)
p(Dk|Tk)

.
As shown in in Figure 1 (b) the set of hyperparameters is optimized by a line search

and gradient descent algorithm after the tree was constructed. The gradient of Eq. 2

w.r.t. to model hyperparameters φ is (with ω
def
= p(H|D))

∂ log p(D|T )
∂φ

= ω
∂ log p(D|H)

∂φ
+(1−ω)

[
∂ log p(Dl|Tl)

∂φ
+

∂ log p(Dr|Tr)

∂φ

]
. (3)

Finally, prediction can be made for an unseen sample x∗ corresponding to task k by
summing over the predictive distribution of each node that includes the target tasks. Let
p(y�|x�, Dk) =

∫
p(y�|x�, θ)p(θ|Dk, φ) dθ denote the predictive distribution of node

k and Ak denotes the set of nodes along the path from the root to the node k. So, the
overall predictive distribution is defined by (see [3])

p(y�|x�, D) =
∑
i∈Ak

wi∑
j∈Ak

wj
p(y�|x�, Di), (4)

where wk = p(Hk|Dk)
∏

i∈Ak\{k}(1− p(Hi|Di)) is a weighting term on cluster k.
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zkπ

α

yki

xki

i = 1 . . . nk

k = 1 . . . K

w∗
j

σ2∗
j

j = 1 . . .∞

Λ

a

b

π ∼GEM(α)
zk | π ∼Mult(π)

σ2∗j | a, b∼G−1(a, b)

w∗
j | σ2∗j ,Λ∼N(0, σ2∗j Λ−1)

yki | xki, zk, {(w∗
j , σ

2∗
j )}∞j=1 ∼N(w∗�

zk
xki, σ

2∗
zk
)

Fig. 2: A graphical model representation of our multi–task linear model using stick–breaking
construction [7] with the corresponding probability distributions of the parameters. GEM(α) is
the stick–breaking distribution over π and each zk is drawn from a multinomial distribution.

3 Multi–Task Linear Model
In this section we propose a parametric linear model for multi–task learning, which
jointly learns its parameters by coupling these with a DP prior. The model implies a
clustering of related tasks, and therefore permits negative information transfer. The pre-
sented BHC algorithm learns the posterior distribution of the latent parameters, which
are used to make Bayesian inference. For each task k the i–th sample yki is generated
from a linear function f(xki) = w�

k xki+ εki, where εk ∼ N(0, σ2
k). If we assume that

yki are drawn i.i.d. from the underlying distribution of task k, then the model likelihood
is given by p(yk|Xk, θk) = N(X�

k wk, σ
2
kI) with θk = {wk, σ

2
k}.

The aim is to learn the functions fk of each task k jointly to share information
across the tasks. In our proposed model we assume that similar tasks should share the
model weights wk and variances σ2

k . This can be done by coupling the parameters θk

by a DP prior, which implies a clustering of the linear models. The base distribution
of the DP is specified by a normal inverse–Gamma distribution, which is the conjugate
prior for the model, that is, we can analytically integrate out the latent parameters θ k.
The parameters are generated by wk ∼ N(0, σ2

kΛ
−1) and σ2

k ∼ G−1(a, b) with the
hyperparameters φ = {Λ, a, b}. From this, we see that the prior comprises a Normal
prior on the coefficients given the noise term, with the assumption that their mass lies
around zero and they are uncorrelated, i.e. Λ = I, and vague inverse–Gamma prior
on the noise term, i.e. its parameters are initialized by a = b = 10−3. The complete
generative model is shown in Figure 2.

To learn the DPM model with linear function estimator using the BHC algorithm
enabling for making Bayesian inference, we have to specify the posterior distribu-
tion of the parameters. By applying Bayes rule the posteriors are p(w k, σ

2
k|Dk) =

N(mN ,ΛN )G−1(aN , bN) with the posterior parametersmN = Λ−1
N X�

k Xkyk, ΛN =
Λ+X�

k Xk, aN = a+nk/2 and bN = b+ 1
2 [y

�
k yk−m�

NΛNmN ]. Thus, the marginal
likelihood of Dk by integrating wk and σ2

k out is given by

p(Dk) =
|Λ| 12 baΓ(aN )

|ΛN | 12 (bN )aNΓ(a)(2π)
2
n

, (5)

which can be inserted into Eq. 2 to build the cluster hierarchy. In the next step, for
optimizing the hyperparameters it is required to specify the gradients of the log marginal
likelihood (Eq. 5) wrt. to the parameters φ. The gradients can then be placed into Eq. 3.
Note that the precision matrix Λ is a positive–semidefinite symmetric matrix and can
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be decomposed into Λ = LL�. In order to keep this property of Λ by the gradient
ascent procedure we have to update the lower triangular matrix L. The gradients wrt.
a, b and L are

∂ log p(Dk)

∂a
= log a− log bN +Ψ(aN )−Ψ(a),

∂ log p(Dk)

∂b
=

a

b
− aN

bN
,

∂ log p(Dk)

∂L
=

{[
Λ−1 −Λ−1

N

]
+

[(
a

b
− aN

bN

)
Λ−1

N BΛ−1
N

]}
L, (6)

where B = Xkyky
�
k X

�
k and Ψ(x) = ∂ log Γ(x)

∂x is the digamma function. Finally the
predictive distribution follows a Student–t distribution, which has the following form

p(y∗|x∗, Dk) = St(x�
∗ mN , bN (1 + x�

∗ Λ
−1
N x∗), bN ), (7)

where the mode x�
∗ mN of the distribution is used as predictive value. The overall

predictive distribution of the BHC model is determined by placing Eq. 7 into Eq. 4.

4 Experimental Results
We evaluate our multi–task learning approach on two real world problems: (i) exam
score prediction and (ii) prediction of ground–motion intensity parameters. For com-
parison, we have also applied a Bayesian linear regression model, which is learned for
each task separately (STL) and on the complete data set (CPL). The model weights are
MAP estimates learned via the EM algorithm. The performance measure employed is
the mean squared error. Table 1 shows that our approach (BHC MTL) outperforms the
baseline methods on all data sets.

CPL STL BHC MTL
School 0.6853 (0.0161) 0.6580 (0.0164) 0.6355 (0.0125)
NGA 0.4197 (0.1646) 0.5412 (0.4235) 0.3857 (0.1868)
Allen & Wald 0.2792 (0.0507) 0.2739 (0.0691) 0.2689 (0.0691)

Table 1: Mean squared error for the different algorithms on the school and two ground–motion
data sets. The figures in brackets are standard errors.

The school data has been used to study the effectiveness of schools. 1 It is a 50%
sample of examination records from 139 secondary schools in years 1987–1989 con-
taining 15362 records. Each task in our setting is defined by the prediction of exam
scores for students of a specific school. For comparison to previous studies [1, 2] we
have used the same 10 random splits of 75% training data and 25% test data and fol-
low the same preproccesing steps. In our experiments we have discarded the school–
dependent features, by the reason that they may differ for the same school in different
years. Previous studies [1, 2] reported their results in terms of explained variance. For
comparison the explained variance of our proposed model is 37.07% which is an in-
crease compared to the best value of 33.08% found in Bonilla et al. [2]. Furthermore
the experiments has been conducted on two ground–motion data sets: (i) the Next
Generation of Attenuation (NGA) [8] data set and (ii) the data set of Allen & Wald [9].
We refer to Kuehn et al. [10] to get a detailed review in the problem of ground–motion

1Data is available at http://www.cmm.bristol.ac.uk/learning-training/
multilevel-m-support/datasets.shtml
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prediction. In this experiment the aim is the prediction of ground–motion intensity pa-
rameters given earthquake– and site–related parameters in which each region represents
a task. The records were mapped to 10 geographical regions as shown in [10]. Further,
we have discarded regions with less than 2 earthquakes and less than 5 samples. Both
data sets were preprocessed by using a binary representation of categorical features and
standardizing numerical features, also samples with missing values were removed. Af-
ter preprocessing the NGA data consists of 2641 samples over 5 regions and the data
of Allen & Wald consists of 14542 over 8 regions. 2 For the experiments we have per-
formed a 10–fold cross validation. To guarantee that our algorithm predicts intensity
parameters well for future earthquakes at specific site in a region, we take into account
that no two records of the same earthquake might occur in both training and test data.

5 Conclusion and Future Work
We presented a hierarchical modelling approach for learning related linear function
estimators in the context of multi–task learning. A DP prior was used to model the
relatedness of different tasks. The results show that clustering of linear functions out-
performs the models in which no information is shared. In future work we hope to
further improve our model by replacing the linear model by Gaussian Processes. Fur-
thermore, we plan to investigate how we can make prediction for novel tasks, in which
no training data is available. We can deal with this by extending our model with an extra
Gaussian component over task specific features, which are also coupled by the DP prior.
This Gaussian component can be considered as gating function, that determines the re-
sponsibility for each task with respect to the novel task. A problem arises in the context
of seismological data, in which the relation between earthquakes and different sites are
nested, i.e. the i.i.d. assumption is violated. Hence, we will extend the model with a
hierarchical DP prior to capture the relatedness of earthquakes in different regions.
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