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Abstract.  Stochastic neighbor embedding (SNE) is a method of di-
mensionality reduction (DR) that involves softmax similarities measured
between all pairs of data points. In order to build a low-dimensional
embedding, SNE tries to reproduce the similarities observed in the high-
dimensional data space. The capability of softmax similarities to fight the
phenomenon of norm concentration has been studied in previous work.
This paper investigates a complementary aspect, namely, the cost function
that quantifies the mismatch between the high- and low-dimensional sim-
ilarities. We show experimentally that switching from a simple Kullback-
Leibler divergences to mixtures of dual divergences increases the quality of
DR. This modification brings SNE to the performance level of its Student
t-distributed variant, without the need to resort to non-identical similarity
definitions in the high- and low-dimensional spaces. These results allow
us to conclude that future improvements in similarity-based DR will likely
emerge from better definitions of the cost function.

1 Introduction

Dimensionality reduction (DR) aims at producing faithful and meaningful repre-
sentations of high-dimensional data into a lower-dimensional space. The general
intuition that drives DR is that close or similar data items should be represented
near each other, whereas dissimilar ones should be represented far from each
other. Through the history of DR, authors have formalized this idea of neigh-
borhood preservation in various ways, using several models for the mapping or
embedding of data from the high-dimensional (HD) space to the low-dimensional
(LD) one. For instance, principal component analysis (PCA) [1] and classical
metric multidimensional (MDS) [2] scaling rely on linear projections that maxi-
mize variance preservation and dot product preservation, respectively. Nonlinear
variants of metric MDS [3] are based on (weighted) distance preservation. These
distances can Euclidean or approximation of geodesic lengths [4]. The use of
similarities in DR is quite recent and emerged with methods based on spectral
optimization. Methods like Laplacian eigenmaps [5] and locally linear embed-
ding [6] involve sparse matrices of similarities, also called affinity matrices. In
spite of a sound theoretical framework, these methods somehow failed to outper-
form older techniques [7, 8, 9]. A possible explanation is that these methods can
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be reformulated into classical metric MDS achieved in a feature space. In this
case, the definition of the similarities merely determines the implicit nonlinear
mapping from the HD data space to the LD feature space [10, 11].

Genuine similarity preservation appeared later with stochastic neighbor em-
bedding [12] (SNE). Interest in this new paradigm grew after the publication of
variants such as Student ¢-distributed SNE [9] (t-SNE) and NeRV [13], stand-
ing for neighborhood retrieval and visualization. These variants led to break-
throughs in terms of DR quality, with outstanding results. Nevertheless, the
reasons of this performance leap remain partly unknown. The role played by
SNE’s specific similarities has been investigated in [14], which revealed their
capability to fight the phenomenon of norm concentration in HD spaces.

This paper focuses on a complementary aspect of SNE, namely, the definition
of its cost function. In the original version and in SNE, the cost function is a sum
of Kullback-Leibler (KL) divergences that measure, for each point, the mismatch
between the HD and LD similarities with respect to its neighbors. NeRV replaces
the asymmetric KL divergence in each term of the sum with a weighted mixture
of two ‘dual’ KL divergences, which turns out to be a type 1 mixture of KL
divergences [15]. Here, we use the type 2 mixture KL divergences [15] and we
show experimentally that it outperforms both the type 1 mixture and the usual
non-blended divergence.

The rest of this paper is organized as follows. Section 2 defines the similarities
used in SNE and its variants. Section 3 deals with the considered divergences
and cost functions for SNE. Section 4 presents and discusses the experimental
results. Finally, Section 5 draws the conclusions.

2 Shift-invariant softmax similarities

Let 2 = [§;]i<i<n denote a set of N points in some M-dimensional space.
Similarly, let X = [x;]1<i<n be its representation in a P-dimensional space,
with P < M. The Euclidean distances between the ith and jth points are given
by 6i; = [|§; — &;ll2 and d;; = ||x; — xj]|2 in the HD and LD spaces respectively.
The corresponding similarities in SNE are defined for i # j by

_emn(=63/(2)2) k)
Zk,k;ﬁiexp(_éz?k/(Q)‘?)) N Zk,k#iexp(_d?k/2)7

where ); is a bandwidth parameter. If 7 = j, then o;; = s;; = 0 by convention.
An important feature of similarities defined as softmax exponential ratios such as
above is the scale invariance of the ratios, which translates into shift-invariance
with respect to the squared distances (5% and dfj [14]. Because null distances
are excluded for the sum in the denominators, the shift applicable to (5% can

and

Uij

(1)

range from —min; j; 51-2]- to 0o. The lower end of this interval ensures that the
shifted distances remain positive. A negative shift close to this lower bound is
particularly interesting to fight the phenomenon of norm concentration. One
manifestation of this phenomenon is the following: for a finite sample of points
E, ming j»; |€; — &, grows faster with M than max; [|€; — §;||. The changing
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shape of distance distributions, depending on the dimensionality, partly explains
to failure of DR methods based on distance preservation. The distances in LD
spaces are always ‘too short’ to match those observed in HD spaces. Invariance
to shifts in similarities circumvents this problem.

3 Divergences to measure similarity mismatch

Due to normalization, softmax similarities add up to one, i.e. 3, 0i; = > 545 =
1. Therefore, o; = [045]1<j<n and s; = [sij]1<j<n can be seen as discrete prob-
ability distributions and divergences can be used to assess their mismatch. In
SNE, the Kullback-Leibler divergence is used. It is defined as Dkr(oi||si) =
>_;0ijlog(oij/sij). The cost function of SNE [12] can then be written as
E(X;2,A) =3, Dkr(0o|lsi). It can be minimized with respect to X by means
of a gradient descent. This requires the bandwidths in A = [A;]i<i<n to be
fixed. For this purpose, let us notice that each Dx1,(o;]|s;) is the varying cross-
entropy of o; and s; minus the constant entropy of ;. In SNE, the bandwidths
A; are adjusted in order to equalize all entropies, namely, > ; 0ij log(os;) = H
for all 2. The user indirectly specifies the targeted entropy value H by giving the
perplexity, which is proportional to exp(H). The equalization actually ensures
that each data point is given the same weight in the cost function. In the com-
putation of its gradient, the combination of logarithms in the divergences and
the exponential functions in the similarities yields a very simple update formula:
X; — X, + ozzj(aij — 835 + 04 — Sji) (X — X;), where « is the step size.
In NeRV [13], the cost function mixes dual KL divergences:

Dy (oillsi) = (1 = B)Dxw(ols:) + BDxL(sil|os) - (2)

Parameter § balances both terms. A similar mixture of reciprocated functions
was previously studied in the context of distance preservation [16]. The cost
function is then E(X;E,A,B) =), Dﬁle(UiHsi). The bandwidth parameters
in the similarities are adjusted in the same way as in SNE (the constant term
w.r.t. s; in the divergence remains the same, multiplied by 1 — ). The gradient

is however more complicated than in SNE. For g = 1/2, D;/fsl(UiHsi) is sym-

. 1/2 1/2 . 1/2 .
metric: DK/le(aiHsi) = DK/le(siHai). According to [15], DK/le(O'iHSi) is the
type 1 symmetric generalization of the KL divergence.

Another way to combine KL divergence is given by

Diyo(aillsi) = (1 - B)Dxw(o|z:) + BDxw(si|z:) | (3)

where z; = (1 — 8)o; + 8s;. For g =1/2, D;(/I?SQ(O'Z'HSZ') is known as the type
2 symmetric KL divergence, or symmetric Jensen-Shannon divergence [15]. To
our best knowledge, Diy; ,(ci[|s;) has never been used as a substitute for the
KL divergence in SNE. The constant term w.r.t. s; in DIﬂ(LSQ (o;|s:) is again the
entropy of o; times 1 — 3. The gradient expression is more complicated and
the optimization of the cost function is rather slow without a good approxima-
tion of at least the diagonal elements of the Hessian. Due to space limitations,
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the technical details cannot be described here. Let us just mention that the
computational complexity remains the same as that of (t-)SNE (i.e. O(N?)).

4 Experiments and results

The experiments involve two data sets (N = 1000). The first one is a spherical
shell that can be re-embedded from 3 to 2 dimensions, such as a planisphere. The
second set is a random subsample of the MNIST database of handwritten digits;
all gray-level images are vectorized (M = 576) and we seck a 2D representation.
The quality criterion used to assess the various embeddings evaluates the
preservation K-ary neighborhoods [8]. The rank of §; with respect to &, in the
HD space is written as p;; = [{k : 0 < 5 0r (dip = djjand 1 < k < j <
N)}|, where |A| denotes the cardinality of set A. Similarly, the rank of x; with
respect to x; in the LD space is 7;; = [{k : dix < dij or (dix = dijj and 1 <
k < j < N)}|. The K-ary neighborhoods of &, and x; are the sets defined by
vE={j:1<p; <K}and nf ={j: 1 <r;; <K}, respectively. Eventually,
the performance index can be written as Qnx(K) = Zf;l lvE nnK|/(KN).
The competing nonlinear DR methods are classical metric MDS, Sammon’s
MDS [3], curvilinear component analysis [17] (CCA), SNE, NeRV (i.e. SNE with

DI1</L251), SNE with DI1</L252, and eventually ¢-SNE. The similarity bandwidths are
adjusted to attain a perplexity equal to 40. Compared to SNE, ¢-SNE use
non-identical definitions of the similarities in the HD and LD spaces; the latter
are given by s;; = (1 + dfj)_l/(zk117k¢1(1 + d2,)~'). The resemblance with
the p.d.f. of a Student ¢ distribution explains the method name. The different
normalization has no noticible effect in experiments. The discrepancy between
the Gaussian similarities in the HD space and the heavy-tailed ones in the LD
space amounts to applying an exponential transformation to d;; to obtain d;; [18].
This transformation stretches the long distances and ¢-SNE yields therefore more
clustered embeddings than regular SNE. In [9], this transformation accounts for
the superior results of {-SNE, as compared to those of regular SNE.

The quality curves are plotted in Figures 1 and 2. As a toy example, the
spherical shell shows that similarity preservation does not outperform distance
preservation; CCA remains the best by far, with the highest curve on the left
of the diagram. The main advantage of shift-invariant similarities is useless
here, since norm concentration is negligible in 3D. The situation changes totally
with the MNIST subset: similarity preservation rules the game. In particular,
the mixtures of divergences outperform the non-blended KL divergence and the
type 2 mixture is better than type 1 (NeRV). In fact, the type 2 mixture performs
just as well as t-SNE, if not better, without resorting to heavy-tailed similarities
in the LD space. Other non-reported experiments confirm these trends. One can
conjecture that blended divergences in the cost function somehow relax similarity
preservation by allowing cuts and tears. Composite similarity vector z; used in
(3) (type 2 mixture) seems to better serve this purpose than mere reciprocation
of the divergence like in (2) (type 1 mixture).
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Fig. 1: Left: the quality curves for the spherical shell. Each curve indicates the

average normalized agreement between corresponding K-ary neighborhoods in
the HD and LD spaces. The higher the left part of the curve, the better the
performance. Right: the corresponding embeddings (except for classical MDS).

5 Conclusion

Nonlinear DR methods based on similarity preservation occupy a more and more
enviable place in the state of the art. Although the specific similarity definitions
used in these methods is certainly one key of their success, other aspects such as
the cost function that measures the similarity mismatch cannot be overlooked.
Switching from a simple asymmetric KL divergence to symmetric extensions
significantly improves the DR results, which then become comparable to those
of other SNE variants, such as ¢-SNE. This shows that other approaches than
the use of heavy-tailed similarities work well too. In the near future, we will
extend our study to symmetric mixtures of S-divergences, which encompasses
the KL divergence and the sum of squared differences as particular cases.
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