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Abstract. Black-box mathematical models are powerful tools in classi-
fication and regression problems. Thanks to the use of (unknown) trans-
formations of the inputs, the outcome can be estimated, improving per-
formance in comparison to standard statistical models. A disadvantage
of these complex models however, is their lack of interpretability. This
work illustrates how advanced methods can be made interpretable. Using
constant B-spline kernel functions and sparsity constraints, interval coded
scoring models for survival analysis are presented.

1 Introduction

Clinical decision support systems are often based on standard statistical models
with linear effects of the inputs. The machine learning techniques are ideal
to model non-linearities present in clinical data and to incorporate interactions
between inputs in an automatic way. However, these techniques are seldomly
used in clinical practice due to the lack of interpretability of the resulting models.

Popular decision support systems are too often based on a rough approx-
imation of (logistic) regression models. A study of the clinical literature on
decision support [1, 2, 3] illustrates that clinicians are interested in decision sup-
port supplied without interfering with the clinical work flow, in an automatic
way and providing recommendations. A commonly used decision support tool is
a scoring chart. Such a chart consists of the effects of several inputs, which are
represented by consecutive intervals, within which the effects are assumed to be
constant. Although these tools have nice properties concerning interpretation
and applicability in a clinical setting, they have major drawbacks: (i) they are
a rough approximation of a previously built model [4] and thus (ii) do not in-
clude a control mechanism for the possible loss of information by creating input
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intervals, (iii) the generated intervals are depending on the model builder, and
(iv) the performance highly depends on the chosen number of intervals.

In order to accomplish the wishes of the end user while overcoming the draw-
backs of the existing tools, a support vector machine for the analysis of survival
data [5, 6] is adapted such that the obtained model automatically results in a
score chart. The intervals of the inputs, as well as the number of intervals, are
defined within the optimization problem. The resulting models are represented
by means of color bars for improved visual interpretation.

2 Interval coded scoring systems

In order to obtain scoring systems, the survival problem is tackled by means
of transformation models [5]. These models combine a ranking step, in which
a score as concordant as possible to the failure time is searched, and a recon-
struction step, linking the score from the previous step with a survival estimate.
Interpretable survival systems can be obtained by adapting the first step of
these models. A discussion on the use of interval coded scoring systems (ICS)
for classification and medical applications is found in [7].

2.1 Step 1: Interval coded scoring systems for survival analysis

To develop an interval coded score system (ICS) for prognostic problems, we
start from a support vector machine for the analysis of survival data, combining
ranking and regression constraints in order to deal with the incomplete informa-
tion of censored observations [6]. The SVM survival model is then adapted at
three points: (i) the model is constrained to be a generalized additive model [8],
(ii) with an explicit feature map with functional forms closely related to constant
B-splines [9], and (iii) sparsity constraints (minimizing the total variation of the
coefficients vector [10]) are added in order to reduce the number of intervals to
a minimum and perform feature selection. Let D = {(xi, yi, δi)}

n
i=1 be a dataset

with xi, yi and δi the inputs, survival time and censoring indicator for the ith

observation, respectively. Let x
p
i be the pth input out of d and wp,l the weight

corresponding to the lth interval and kp + 1 the number of intervals (thresh-
olds τp,l) of the pth input. The model is then written as a convex optimization
problem [11]:

min
w,b,ǫ,ξ,ξ∗

∑d

p=1

∑kp+1

l=1 |wp,l − wp,l−1|
iii

+ γ

n
∑

i=1

ǫi + µ

n
∑

i=1

(ξ + ξ∗)

s.t.



































ŷi =
∑d

p=1

i
(

∑kp+1

l=1 wp,lI(τp,l−1 ≤ x
p
i < τp,l)

ii
)

+ b, ∀ i = 1, . . . , n ,

ŷi − ŷi−1 + ǫi ≥ yi − yi−1, ∀ i = 2, . . . , n ,

ŷi ≥ yi − ξi, ∀ i = 1, . . . , n ,

−δiŷi ≥ −δiyi − ξ∗i , ∀ i = 1, . . . , n ,

ξi, ξ
∗
i , ǫi ≥ 0, ∀ i = 1, . . . , n .
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To reduce the number of steps, an iteratively reweighted L1 minimization is
performed. The difference between the weights of two consecutive intervals is
weighted with χp,l =

1
ε+a|wpl−wpl−1|

, ∀ p = 1, . . . , d, ∀ l = 1, . . . , kp + 1, where

ε is a small positive value (e.g. 0.0005) and the value of a is optimized for the
problem at hand.

Although the result is easy to interpret, it is not yet easy to use. We there-
fore propose to normalize the coefficients wp,l such that the smallest non-zero
absolute value of the coefficients becomes 1. All other normalized coefficients
are rounded to the nearest integer (w̃p,l). The final score for a new observation

x⋆ is then found as
∑d

p=1

(

∑kp+1

l=1 w̃p,lI(τp,l−1 ≤ x
p
⋆ < τp,l)

)

.

2.2 Step 2: Estimation of the survival function

Once the scores are calculated, a survival function needs to be estimated. Prefer-
ably, one survival curve is estimated for each possible score. However, estimation
of this function will only be reliable when enough observations (with events) have
the same score. The ICS survival model is therefore used a second time, using
the scores as input and the failure times as output. The obtained step function
will now denote which scores correspond to the same survival and can therefore
be taken together when estimating the survival curves Ŝ.

The cumulative distribution function (CDF), equal to 1 − Ŝ, is estimated
by means of monotone least-squares support vector regression [12]. To include
censored observations, the data are preprocessed. An augmented data setDaug =
{Di}

n
i=1 is created. Each data set Di = {(xi, yi,k)}

nt

k=1 represents a replication
of observation i within nt consecutive time intervals k = 1, . . . , nt. The outcome
yi,k is zero when the event did not occur before the end of the kth time interval.
For events, yi,k = 1 for all intervals ending after the observed failure time. For
censored data, the observations are only replicated within the intervals in which
they are known to be at risk. The model then becomes

min
w,b,ǫ

1

2
wTw +

γ

2

n
∑

i=1

nt
∑

k=1

ǫ2i,k

s.t.



















wTϕ(xi,k) + b = yi,k + ǫi,k, ∀ i = 1, . . . , n;∀ k = 1, . . . , nt ,

wT (ϕ(xi,k)− ϕ(xi,k−1)) ≥ 0, ∀ i = 1, . . . , n; ∀ k = 2, . . . , nt ,

wTϕ(xi,k) + b ≥ 0, ∀ i = 1, . . . , n; ∀ k = 1, . . . , nt ,

−wTϕ(xi,k)− b ≥ −1, ∀ i = 1, . . . , n; ∀ k = 1, . . . , nt ,

with xi,k the augmented input xi,k = [xi, k]
T . In the above formulation xi is

the score obtained from the first step of the transformation model and k the kth

time interval.
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3 Illustrative example

The ICS for survival analysis is illustrated on the prognosis of primary opera-
ble breast cancer patients. The model is trained on a set of 1923 patients with
complete information, treated at the University Hospitals Leuven between Jan-
uary 2000 and June 2005. The scoring system is then validated on an external
set containing complete information on 1192 patients treated in New Zealand
(Auckland Breast Cancer Registry) between January 2000 and December 2005.
Only patients with complete information for age, tumor size, number of positive
lymph nodes, expression of the progesterone (PR) and human epidermal growth
factor receptor 2 (HER2) and tumor grade were considered in the analysis. The
model was trained using 10-fold cross-validation to tune the hyperparameter. In
order to find the optimal weight parameter a, 5-fold cross-validation was used.
The obtained ICS model is illustrated in Figure 1. The ICS model is used a
second time with the ICS scores as a single input in order to obtain the best cut-
off values to define risk groups. Five different risk groups are recognized, with
predicted survival curves closely aligning with the observed curves, in training
as well as in test set (results not shown).

replacemen

Number of positive nodes pr positive

her2 positive Tumor grade

0 1 2 3 4 5 6 7 8

0 -1 -2 -3 -4 -10 -17

no yes

0 2

no yes

0 -2

1 2 3

0 -4 -11

Risk profile 2 years after surgery

Score

Ŝ

≤-15 -14 to -10 -9 to -4 -3 to -2 ≥-1

0.75 0.90 0.98 0.98 0.98

Risk profile 5 years after surgery

Score

Ŝ

≤-15 -14 to -10 -9 to -4 -3 to -2 ≥-1

0.62 0.78 0.91 0.92 0.94

Fig. 1: ICS model to predict the prognosis of primary operable breast cancer
patients. Given this chart, the clinician knows which variables need to be col-
lected in order to obtain an estimate of the patient’s prognosis. For each of
the represented bars, the corresponding points need to be calculated. The total
score is obtained by addition of all these points.

The ICS model is compared with the standard model for defining breast can-
cer risk groups, the Notthingham prognostic index (NPI) [13] and an improved
version (iNPI) [14]. Both models use three risk groups. However, this number is
chosen arbitrarily. The ICS method is used a second time with the continuous
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(a) Leuven data
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(b) Auckland data

NPI risk group 1
NPI risk group 2
NPI risk group 3
iNPI risk group 1

iNPI risk group 2
iNPI risk group 3
iNPI risk group 4
ICS risk group 1

ICS risk group 2
ICS risk group 3
ICS risk group 4
ICS risk group 5

Fig. 2: Kaplan-Meier survival curves according to the risk groups defined by
NPI, iNPI and ICS. The best separation is found using ICS.

outcome of the NPI or iNPI as input to obtain the number of risk groups with
different survival curves. Application of this approach on the NPI yields 3 risk
groups with cut-offs at 2.6 and 4.4. The resulting groups on the iNPI are defined
by the cut-offs 3.5, 4.3 and 6.3. The Kaplan-Meier curves of the different risk
groups are represented in Figure 2. The NPI can only divide patients into three
risk groups, for which the predicted survival at two and five years differ less
than for both other models. The iNPI obtains the largest estimated survival
difference between the most extreme risk groups. The NPI is able to define a
very good prognostic group, but does not find a risk group with a very poor
prognosis. The iNPI on the contrary does find a very poor prognostic group,
but fails to find a very good prognostic group. The ICS model finds both a very
good and a very bad prognostic group.

4 Conclusions

This paper presents an attractive way to visualize a survival model. A study
of the properties needed to lower the threshold to use clinical decision supports
systems in clinical practice, learned that clinicians appreciate the representation
of a model by means of intervals. A SVM survival model was therefore adapted
such that the resulting models automatically lead to clinical yes/no questions.
Depending on the answers, a point is added to the score. The final score is then
used to attach a patient-specific estimate of the risk on the event over time.

The model was illustrated on the prognosis of primary operable breast cancers
and validated on an independent test set. The results are promising: the model
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is able to identify which variables are important to predict relapse, but it is also
able to identify how many different survival groups can be noted. A comparison
with currently used methods for the classification of patients within risk groups
indicates that the ICS method is able to define more risk groups than both
reference models and the survival curves have a wider spread.

In the future, it will be necessary to adapt the model structure in order to
allow for interactions between input variables. Additionally, further research is
necessary to estimate survival curves for large datasets and more time points.
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