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Abstract. This article presents an alternative method to find the global
maximum likelihood estimates of the mixing probabilities of a mixture of
multinomial distributions. For these mixture models it is shown that the
maximum likelihood estimates of the mixing probabilities correspond with
the roots of a multivariate polynomial system. A new algorithm, set in a
linear algebra framework, is presented which allows to find all these roots
by solving a generalized eigenvalue problem.

1 Introduction

The term maximum likelihood was first coined by Fisher in 1922 [1, 2]. Since
then, the use of maximum likelihood estimation has become extremely popular
in a vast number of fields. The two most common methods for finding maximum
likelihood estimates are Expectation Maximization (EM) [3] and Markov Chain
Monte Carlo (MCMC) [4, 5]. EM is an iterative hill climbing algorithm. Start-
ing from some initial guess, model parameters are updated consecutively such
that the likelihood increases until convergence has occurred. This dependence of
the solution on the initial guess means that for the case of many solutions only
a local maximum is obtained. MCMC methods are typically used in a Bayesian
Learning setting where one is usually more interested in posterior distributions
than in point estimates. These methods allow to generate samples from un-
known distributions which then can be used to calculate point estimates (such
as the mode or mean). Although this method is commonly used to sample the
posterior distribution it can be also utilized to obtain maximum likelihood esti-
mates [6]. A more recent method has come from the field of algebraic statistics
which seeks to mix algebraic geometry and commutative algebra with statistics
[7]. This method relies on Buchberger’s algorithm which is a symbolic method
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however and therefore has inherent difficulties when dealing with real numbers.
This article presents a numerical method for finding maximum likelihood esti-
mates which is guaranteed to find the global maximum. This is achieved by
first showing that for a mixture of multinomial distributions finding the maxi-
mum likelihood estimates of the mixing probabilities corresponds with solving
a multivariate polynomial system. Then an algorithm is presented which allows
to find all solutions of polynomial systems by solving a generalized eigenvalue
problem.

2 Maximum Likelihood and Multivariate Polynomial Sys-
tems

The models considered in this paper are mixtures of multinomial distributions. n
will denote the number of distributions in the mixture and K the total number
of possible outcomes in an experiment. Each nth multinomial distribution is
characterized by K probabilities p(k|i) with i = 1 . . . n and k = 1 . . .K. These
are assumed to be known. The probability of an observed outcome yk is then
given by

pyk
(x) = x1 p(k|1) + . . . + xn p(k|n) =

n∑
i=1

xi p(k|i) (1)

where x = (x1, . . . , xn) are the unknown mixing probabilities. Data are typically
given as a sequence of observations. The integer N denotes the sample size.
When all observations are independent and identically distributed, the data can
then be summarized in a data vector u = (u1, . . . , uK). Each possible outcome
yk is observed uk times and therefore u1 + u2 + . . . + uK = N . We can now
define the likelihood function.

Definition 2.1 Given a mixture of n multinomial distributions and a sequence
of N independent and identical distributed samples then the likelihood function
L(x) is given by

L(x) = py1(x)u1py2(x)u2 . . . pyK (x)uK =
K∏

i=1

pyi(x)ui . (2)

This function depends on the parameter vector x and data vector u and is hence
called the likelihood function. Note that it is the assumption of independent and
identical distributed observations that allows us to factorize the likelihood. Any
reordering of the observations leads to the same data vector u and has therefore
no effect. Multiplying probabilities leads to very small numbers which could
lead on a computer to numerical underflow. By taking the logarithm of (2) the
expression is reduced to

l(x) = logL(x) =
K∑

i=1

ui log pyi(x)
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which effectively transforms the product of probabilities into a sum. This takes
care of the numerical underflow problem. The maximum log-likelihood estimate
of x is the solution of the following optimization problem

x̂ = argmax
x

l(x) (3)

which is equivalent with maximizing L(x) since the logarithm is a monotonic
function. The optimization problem (3) is solved by taking the partial derivatives
of l(x) with respect to each xi and equating these to zero. This results in the
following system of n rational equations in n unknowns

⎧⎪⎪⎨
⎪⎪⎩

∂l(x)
∂x1

=
∑

i
ui

pyi

∂pyi

∂x1
= 0

...
∂l(x)
∂xn

=
∑

i
ui

pyi

∂pyi

∂xn
= 0.

(4)

These are rational equations since each term contains a linear polynomial of the
form (1) in the denominator. Therefore, in order to find the solutions of (4) all
terms of each equation need to be put onto a common denominator. Then one
needs to solve the polynomial system obtained from equating the nominators to
zero. Note that the dependencies of pk on x are dropped in the notation. A
polynomial system like this typically has many solutions. Also note that it is in
fact possible to eliminate 1 unknown. Using the relation x1 + . . . + xn = 1 it is
possible to reduce the number of equations and unknowns to n − 1. Now that
it is established that finding the maximum likelihood estimates for the mixing
probabilities corresponds with solving a multivariate polynomial system a new
algorithm is introduced which guarantees to find all solutions (including the
global optimum).

3 Solving Polynomial Systems as Eigenvalue Problems

An overview of the basic polynomial root-finding algorithm is given for the case
that there are no roots with multiplicities and roots at infinity. More details
for the case of multiplicities and roots at infinity can be found in [8, 9]. The
main idea will be to generate a matrix M(d) that contains all coefficients of the
polynomial system and find its kernel (null space). This can be done using either
the singular value decomposition (SVD) or rank-revealing QR decomposition.
The computational complexity of this algorithm is therefore of the order O(pq2)
where M(d) is a p× q matrix.
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Algorithm 3.1
Input: n n-variate polynomials F = f1, . . . , fn of degrees d1, . . . , dn

Output: kernel K

1: M ← coefficient matrix of F up to degree d =
∑n

i=1 di − n + 1
2: s← nullity of M
3: Z ← basis null space from SVD(M) or QR(M)
4: S1 ← row selection matrix for s linear independent rows of Z
5: S2 ← row selection matrix for shifted rows of S1 Z
6: B ← S1 Z
7: A← S2 Z
8: [V, D]← solve eigenvalue problem B V D = AV
9: K ← Z V

As mentioned before, the first step in the algorithm is to construct the coeffi-
cient matrix of the polynomial system F . In order to explain how this coefficient
matrix is made we first need to explain how multivariate polynomials are rep-
resented by their coefficient vectors. This is achieved by simply storing the
coefficients of the polynomial into a row vector according to a certain monomial
ordering. In principle any monomial ordering can be used. We refer to [10] for
more details on monomial orderings. The following example illustrates this for
a bivariate polynomial of degree 2.

Example 3.1 The vector representation of 2 + 3x1 − 4x2 + x1x2 − 7x2
2 is

( 1 x1 x2 x2
1 x1x2 x2

2

2 3 −4 0 1 −7
)
.

We can now define the coefficient matrix M(d) of a multivariate polynomial
system up to a degree d.

Definition 3.1 Given a set of n-variate polynomials f1, . . . , fn, each of degree
di (i = 1, . . . , n) then the coefficient matrix of degree d, M(d), is the matrix
containing the coefficients of

M(d) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1

x1f1

...
xd−d1

n f1

f2

x1f2

...
xd−dn

n fn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

where each polynomial fi is multiplied with all monomials from degree 0 up to
d− di for all i = 1, . . . , n.
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Note that the coefficient matrix not only contains the original polynomials
f1, . . . , fn but also ’shifted’ versions where we define a shift as a multiplication
with a monomial. The dependence of this matrix on the degree d is of crucial
importance, hence the notation M(d). It can be shown [11, 12] that the degree
d =

∑n
i=1 di − n + 1 provides an upper bound for the degree for which all the

solutions of the polynomial system appear in the kernel of M(d). This brings
us to step 2 of Algorithm 3.1. The number of solutions of F are counted by
the dimension of the kernel (nullity) of M(d). For the case that there are no
multiplicities and no solutions at infinity, this is then simply given by the Bezout
bound mB =

∏n
i=1 di. As described in more detail in [8, 9], steps 3 up to 9 find

all these solutions from a generalized eigenvalue problem which is constructed
from exploiting the structure of the canonical kernel. The canonical kernel K of
M(d) is a n-variate Vandermonde matrix. It consists of columns of monomials,
ordered according to the chosen monomial ordering and evaluated in the roots of
the polynomial system. This monomial structure allows to use a shift property
which is reminiscent of realization theory. This shift property tells us that the
multiplication of rows of the canonical kernel K with any monomial corresponds
with a mapping to other rows of K. This can be written as the following matrix
equation

S1KD = S2K (6)

where S1 and S2 are row selection matrices and D a diagonal matrix which
contains the shift monomial on the diagonal. S1 will select the first mB linear
independent rows of K. The canonical kernel K is unfortunately unknown but
a numerical basis Z for the kernel can be computed from either the SVD or QR
decomposition. This basis Z is then related to K by means of a linear transform
V , K = ZV . Writing the shift property (6) in terms of the numerical basis Z
results in the following generalized eigenvalue problem

BV D = AV (7)

where B = S1Z and A = S2Z are square nonsingular matrices. The eigenvalues
D are then the shift monomial evaluated in the different roots of the polyno-
mial system. The canonical kernel K is easily reconstructed from K = ZV .
The monomial ordering used in Algorithm 3.1 is such that the first row of the
canonical kernel corresponds with the monomial of degree 0. Therefore, after
normalizing K such that its first row contains ones, all solutions can be read off
from the corresponding first degree rows.

4 Conclusion

It was shown that finding the maximum likelihood estimates for the mixing prob-
abilities of a mixture of multinomial distributions is equivalent with solving a
multivariate polynomial system. A new algorithm was introduced that is guar-
anteed to find all solutions of such multivariate polynomial systems. Since the
algorithm uses basic linear algebra tools it can be easily implemented using any
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numerical linear algebra software package (e.g. Lapack[13]). This method is not
limited in any way to mixture models. In fact, as soon as the maximum likeli-
hood (or log-likelihood) estimation is equivalent to solving a polynomial system
this method can be employed. Likewise, the assumption of having independent
and identical distributed observations is not strictly necessary. It only allows
to factorize the likelihood and hence reduces the complexity of writing down
the polynomial system. It would be interesting to further investigate for which
other discrete statistical models maximum likelihood estimation is equivalent
with multivariate polynomial system solving.
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