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Abstract. Random forests are effective supervised learning methods
applicable to large-scale datasets. However, the space complexity of tree
ensembles, in terms of their total number of nodes, is often prohibitive, spe-
cially in the context of problems with very high-dimensional input spaces.
We propose to study their compressibility by applying a L1-based regu-
larization to the set of indicator functions defined by all their nodes. We
show experimentally that preserving or even improving the model accuracy
while significantly reducing its space complexity is indeed possible.

1 Introduction

High-dimensional supervised learning problems, e.g. in image exploitation and
bioinformatics, are more frequent than ever. Tree-based ensemble methods, such
as random forests [1] and extremely randomized trees [2], are effective variance
reduction techniques offering in this context a good trade-off between accuracy,
computational complexity, and interpretability. The number of nodes of a tree
ensemble grows as nM (n being the size of the learning sample and M the
number of trees in the ensemble). Empirical observations show that the variance
of individual trees increases with the dimension p of the original feature space
used to represent the inputs of the learning problem. Hence, the number M(p)
of ensemble terms yielding near-optimal accuracy, which is proportional to this
variance, also increases with p. The net result is that the space complexity of
these tree-based ensemble methods will grow as nM(p), which may jeopardize
their practicality in large scale problems, or when memory is limited.

While pruning of single tree models is a standard approach, less work has
been devoted to pruning ensembles of trees. Reference [3] proposes however to
transpose the classical cost-complexity pruning of individual trees to ensembles.
On the other hand, references [4, 5, 6] propose to improve model interpretability
by selecting optimal rule subsets from tree-ensembles. Another approach to
reduce complexity and/or improve accuracy of tree-ensembles is to merely select
an optimal subset of trees from a very large ensemble generated in a random
fashion at the first hand (see, e.g. [7, 8]).

To further investigate the feasibility of reducing the space complexity of
tree-based ensemble models, we consider in this paper the following experiment:
(i) build an ensemble of trees; (ii) apply to this ensemble a ‘compression step’
by reformulating the tree-ensemble based model as a linear model in terms of
node indicator functions and by using an L1-norm regularization approach -
à la Lasso [9] - to select a minimal subset of these indicator functions while
maintaining predictive accuracy. We propose an algorithmic framework and
an empirical investigation of this idea, based on three complementary datasets,
and we show that indeed it is possible to so compress significantly tree-based
ensemble models, both in regression and in classification problems. We also
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observe that the compression rate and the accuracy of the compressed models
further increase with the ensemble size M , even beyond the number M(p) of
terms required to ensure convergence of the variance reduction effect.

The rest of this paper is organized as follows: Section 2 introduces extremely
randomized trees and their L1-norm based compression; Section 3 provides our
empirical study and Section 4 concludes and describes further perspectives.

2 Compressing tree ensembles by L1-norm regularization

We use the extremely randomized tree algorithm (Extra-Trees, [2]) which builds
an ensemble of M trees from a dataset of input-output pairs ((xi, yi))

n
i=1 ∈

(X × Y)n as follows: for each node at which the sample size is greater or equal
to a pre-pruning parameter nmin, the best split is chosen among a random subset
of K variables combined with a random cut point. Setting parameter K to p
allows to filter out irrelevant variables, nmin controls the tree complexity possibly
at the price of higher bias, and the higher M the smaller the variance.

From an ensemble ofM trees, one can extract a set of node indicator functions
as follows: each indicator function 1m,l(x) is a binary variable equal to 1 if the
input vector x reaches the lth node in the mth tree, 0 otherwise. Using these
indicator functions, the output predicted by the model may be rewritten as:

ŷ(x) =
1

M

M∑
m=1

Nm∑
l=1

wm,l 1m,l(x), (1)

where Nm is the number of nodes in the mth tree and wm,l is equal to the
leaf-label if node (m, l) is a leaf and to zero if it is an internal node. We can
therefore interpret the tree building algorithm as the (random) inference of a
new representation which lifts the original input space X towards Z of dimension

q =
∑M

m=1 Nm by z(x) = (11,1(x), . . . , 11,N1(x), . . . , 1M,1(x), . . . , 1M,NM (x)).
We propose to compress the tree ensemble by applying a variable selection

method to its induced feature space Z. Namely, by L1-regularization we can
search for a linear model by solving the following optimization problem:

(
β∗
j (t)

)q
j=0

= argmin
β

n∑
i=1

⎛
⎝yi − β0 −

q∑
j=1

βj zj(xi)

⎞
⎠

2

s.t.

q∑
j=1

|βj | ≤ t. (2)

This optimization problem, also called LASSO [9], has received much attention
in the past decade and is particularly successful in high dimension. The L1-
norm constraint leads to a sparse solution: only a few weights βj will be non
zero, and their number tends to zero with t → 0; the optimal value t∗ of t
is problem specific and is typically adjusted by cross-validation. In order to
solve Eqn. (2) for growing values of t, we use the ‘incremental forward stagewise
regression’ algorithm [10] which imposes that each β∗

j (t) increases monotonically
with t. This version deals indeed better with many correlated variables, which
is relevant in our setting, since each node indicator function is highly correlated
with those of its neighbor nodes in the tree from which it originates. The final
weights β∗

j (t
∗) may be exploited to prune the randomized tree ensemble: a test

node can be deleted if all its descendants correspond to β∗
j (t

∗) = 0.
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3 Empirical analysis

In the following experiments, datasets are pre-whitened: input/output data are
translated to zero mean and rescaled to unit variance. All results shown are
averaged over 50 experiments in order to avoid randomization artifacts.

When using the Lasso, the incremental forward stagewise algorithm was ap-
plied with a 0.01 step size, and the optimal point t∗ of the regularization path
was chosen by ten-fold cross-validation t∗cv over the learning set (to this end, we
used a quadratic loss in regression and a 0− 1 loss in classification).

Below, we will abbreviate extremely randomized trees by “ET” and their
L1-regularization-based compressed version by “rET”.

3.1 Overall performances

We have evaluated our approach on three datasets:

• Friedman1 [11] is a regression problem with p = 10 independent input
variables of uniform distribution U(0, 1). We try to estimate the output
y = 10 sin (π x1 x2) + 20(x3 − 1

2 )
2 + 10x4 + 6x5 + ε, where ε is a Gaussian

noise N (0, 1). There are 300 learning samples and 2000 testing samples.

• Two-norm [12] is a binary classification problem with p = 20 normally
distributed (and class-conditionally independent) input variables: either
from N (−a, 1) if the class is 0 or from N (a, 1) if the class is 1 (with
a = 2√

20
). There are 300 learning and 2000 testing samples.

• SEFTi [13] is a (simulated) regression problem which concerns the tool
level fault isolation in a semiconductor manufacturing. One quarter of the
values are missing at random and were replaced by the median. There are
p = 600 input variables, 2000 learning samples and 2000 testing samples.

We have used a set of representative meta-parameter values (K, nmin and
M) of the Extra-Trees algorithm (see Table 1). Accuracies are measured on
the test sample and complexity is measured by the number of test nodes of the
ET and rET models (the compression factor being the ratio of the former to
the latter). We observe a compression factor between 9 and 34, a slightly lower
error for the rET model than for the ET model on the two regression problems
(Friedman1 and SEFTi) and the opposite on Two-norm. To compare, we show
the results obtained with the Lasso on the original features: it is much less accu-
rate than both ET and rET on the (non-linear) regression problems (Friedman1
and SEFTi), but superior on the (linear) classification problem (Two-norm).

Side experiments (results not provided) show that changing the value of
parameter K does not influence significantly the final accuracy and complexity
on the Two-norm and Friedman1 datasets, while for SEFTi, accuracy increases
strongly with K (presumably due to a large number of noisy and/or irrelevant
features) with however little impact on the final complexity.

3.2 Detailed analysis of the compression method behavior

In this section, we further analyze the models obtained on the Friedman1 prob-
lem. Similar conclusions can also be drawn for Two-norm and SEFTi datasets.
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Datasets Error Complexity

ET rET Lasso ET rET ET/rET Lasso

Friedman1 0.19587 0.18593 0.282441 29900 885 34 4

Two-norm 0.04177 0.06707 0.033500 4878 540 9 20

SEFTi 0.86159 0.84131 0.988031 39436 2055 19 14

Table 1: Overall assessment (parameters of the Extra-Tree method: M = 100;
K = p; nmin = 1 on Friedman1 and Two-norm, nmin = 10 on SEFTi).

Effect of the regularization parameter t. The complexity of the regularized ET
model is shrunk with the L1-norm constraint of equation (2) in a way depending
on the value of t. As shown on Figure 1(a), an increase of t decreases the error of
rET until t = 3, leading to a complexity (Figure 1(b)) of about 900 test nodes.
Notice that in general the rET model eventually overfits when t becomes large,
although this is not visible on the range of values displayed on Figure 1(a).

(a) Estimated risk (b) Complexity

Fig. 1: An increase of t decreases the error of rET until t = 3 with drastic
pruning (M = 100, K = p = 10 and nmin = 1).

Influence of the Extra-Tree meta parameters nmin and M . The complexity of
an ET model grows (linearly) with the size of the ensemble M and is inversely
proportional to its pre-pruning parameter nmin. Figures 2 show the effect of
nmin and Figures 3 the effect of M on both ET and rET models. Interestingly,
the accuracy and complexity of the rET model does not depend on the precise
value of nmin, as long as it is small enough (nmin ≤ 10, on Figures 2). On the
other hand, increasing the value of M beyond the value M(p) where variance
reduction has stabilized (M(p) � 100 on Figures 3) allows to further improve
the accuracy of the rET model without increasing its complexity.
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(a) Estimated risk (b) Complexity

Fig. 2: The accuracy and complexity of an rET model does not depend on nmin,
for nmin small enough (M = 100, K = p = 10 and t = t∗cv).

(a) Estimated risk (b) Complexity

Fig. 3: After variance reduction has stabilized (M � 100), further increasing M
keeps enhancing the accuracy of the rET model without increasing complexity
(nmin = 10, K = p = 10 and t = t∗cv).

4 Conclusion

Compression of randomized tree ensembles with L1-norm regularization leads
to a drastic pruning while preserving accuracy. The complexity of the pruned
model does not seem to be directly related to the complexity of the original
forest, i.e. the number and complexity of each randomized tree, as long as this
forest has explored a large enough space of variable interactions.

The strong compressibility of large randomized tree ensemble models sug-
gests that it could be possible to design novel algorithms based on tree-based
randomization which would scale in a better way to very high-dimensional input
spaces than the existing methods. To achieve this, one open question is how
to get the compressed tree ensemble directly, i.e. without generating a huge
randomized tree ensemble and then pruning it.

Tree-based ensemble models may be interpreted as a lifting of the original in-
put space towards a (randomly generated) high-dimensional discrete and sparse
representation, where each induced feature corresponds to the indicator function
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of a particular tree node, and takes the value 1 for a given observation if this
observation reaches this node, and 0 otherwise. The dimension of this represen-
tation is on the order of nM(p), but the number s of non-zero components for a
given observation is only on the order of M(p) logn. Compressed sensing theory
[14] tells us that high-dimensional sparsely representable observations may be
compressed by projecting them on a random subspace of dimension proportional
to s log p, where p is the original dimension of the observations and s � p is the
number of non-zero terms in their sparse representation basis. This suggests
that one could reduce the space complexity of tree-based method by applying
compressed sensing to their original input feature space if its dimension is high,
and/or to their induced feature space if nM(p) is too large.

We believe that further developments will benefit from the many results of
the compressed sensing field, once the connection between this theory and tree-
based ensemble methods is more profoundly established.
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