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Abstract. The paper introduces an input-driven generative model
for tree-structured data that extends the bottom-up hidden tree Markov
model with non-homogenous transition and emission probabilities. The
advantage of introducing an input-driven dynamics in structured-data pro-
cessing is experimentally investigated. The results of this preliminary
analysis suggest that input-driven models can capture more discrimina-
tive structural information than non-input-driven approaches.

1 Introduction

Input/Output Hidden Markov Models (IO-HMMs) enable non-homogenous and
input-driven state transition and emission dynamics within HMM models for
sequential data [1]. The underlying intuition is simple, i.e. learning an input-
conditional hidden process for the output sequence, and it has shown good
potential for learning sequence transductions between different modalities [2].
However, its practical advantage with respect to homogenous models is still
questioned [3]. In a sequence classification task, it is unclear whether the dis-
criminative power of IO-HMM is superior to that of multiple HMMs, each mod-
eling a single class distribution. Similarly, in regression tasks, HMMs can effec-
tively be used to model the joint distribution of the dependent and independent
variables, in place of learning the input-conditional distribution of the depen-
dent variable as in IO-HMM [3]. We investigate the opportunity of input-driven
HMMs dealing with more complex, tree-structured data. The contribution of
this paper is twofold. First, we propose an Input-Output Bottom-up Hidden
Tree Markov Model (IO-BHTMM), the first practical input-driven generative
model for tree-structured data. This is mostly due to the strong computational
limitations imposed by bottom-up generative modeling of trees, that have only
recently been addressed [4] by means of an efficient finite mixture approximation
which is also at the basis of the proposed IO-BHTMM. Secondly, we confront
the proposed model with homogenous generative models in literature, to empiri-
cally assess, for the first time, if an input-driven approach is capable of capturing
more discriminative structural information than its homogenous counterpart. To
this end, we start our empirical analysis from the simplest non-trivial scenario,
comprising the transduction of an input tree into an isomorph output within a
structure classification scenario. A successful achievement on such preliminary
analysis, would pave the way to a deeper assessment of input-driven generative
models on more general transductions.
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2 IO-HMM for Bottom-up Tree Processing

Let us consider a dataset D = {(x1,y1), . . . , (xN ,yN )} of N structured samples
(xn,yn), where xn is a labeled and rooted input tree with maximum finite out-
degree L (i.e. the maximum number of children of a node). Each vertex u in
the input tree is associated with a label xu which, for the sake of this paper, is a
d-dimensional discrete vector. The corresponding output yn is a labeled rooted
tree with the same structure as the input tree, but different discrete labels yu
associated to the vertices u. The task is to learn a conditional generative model
P (yn|xn) for the structured output, given input xn. This corresponds to learning
an IO-isomorphic transduction (i.e. a relabeling of the nodes) from inputs xn

to the outputs yn. As in standard HMM, learning of P (yn|xn) is achieved
by introducing an hidden state variable Qu following the same indexing as the
observed nodes u, with values over the finite set [1, . . . , C].

Introducing the hidden state Qu allows to simplify the conditional distribu-
tion P (yn|xn) by using the conditional independence assumptions defined by
the underlying hidden Markov model. In this paper, we use the Bottom-up Hid-
den Tree Markov Model (BHTMM) [4], that defines a generative unconditional
process P (xn) for a tree xn that flows from the leaves to its root. In the un-
conditional BHTMM, the Markovian assumption affirms that Qu summarizes
enough information to emit the node labels. In our conditional scenario, the
state variable emits the output label yu conditioned on the input xu, resulting
in the conditional emission P (yu|Qu = i, xu). In the bottom-up approach, the
hidden state of a node Qu is determined by a state transition from the joint
configuration of its child nodes. Such children-to-parent transition allows to
effectively model the co-occurrence of substructures among the subtrees of in-
ternal nodes [4]. The BTHMM factorizes such joint state transition as a mixture
of pairwise child-to-parent transitions, to make it computationally practical. In
our scenario, we model the input-conditional contribution of the l-th child to
the state-transition of the parent node u as P (Qu = i|Qchl(u) = j, xu). The ex-
act form of the input-conditional emission and transition distributions depends
primarily on the input type. Here, we focus on discrete labels from a finite
alphabet, which result in multinomial input-conditional distributions.

The likelihood of the Input/Output switching-parent BHTMM (IO-BHTMM)
is obtained by factorizing the probability P (yn|xn) using the conditional emis-
sion and transition distributions. The unknown hidden state associations Qu = i
are introduced using marginalization and the final log-likelihood for the N sam-
ples writes (passages are omitted due to page limitations)

Lc =

N∑
n=1

C∑
i=1

(∑
u∈Un

znu(i) logP (yu|Qu = i, xu) +
∑

u′∈LFn

znu′(i) logP (Qu′ = i|xu′)

)

+

N∑
n=1

∑
u∈In

C∑
i,j=1

L∑
l=1

znul(i, j) (logP (Su = l) + logP (Qu = i|Qchl
= j, xu))

where P (Qu′ = i|xu′) is the conditional prior distribution for the leaves LFn and
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znui are indicator variables such that znui = 1 if Qu = i in the n-th tree and znui = 0
otherwise. Similarly, znul(i, j) = 1 if Qu = i and its l-th child has Qchl

= j, while
znul(i, j) = 0 otherwise. The term Un denotes the set of vertices in the n-th tree,
while P (Su = l) is the switching parents distribution and measures the weight
of the contribution of the l-th child to the state transition of node u.

Learning of the IO-BTHMM parameters can be achieved by applying Ex-
pectation Maximization (EM) to the log-likelihood Lc: the E-step can be done
efficiently by exploiting a modified version of the reversed upwards-backwards
procedure for BHTMM [4]. The IO-BTHMM parameters are estimated based
on the posterior of the indicator variables znul(i, j), that is the conditional ex-
pected value εlu,chl

(i, j) = E[znul(i, j)|D] = P (Qu = i, Qchl(u) = j, Su = l|x,y)
The posterior is estimated at the E-step by message passing on the structure of
the nodes’ dependency graph, using the following decomposition

εu(i) = P (Qu = i|x,y) = P (x1\u,y1\u|Qu = i)

P (x1\u,y1\u|xu,yu)
P (Qu = i|xu,yu), (1)

where the term xu (yu) identifies the input (output) subtree rooted at node
u, while x1\u denotes the input tree without the xu subtree. Let us define
βu(i) = P (Qu = i|xu,yu) as the upward probability, that is computed during
a preliminary bottom-up recursion on the tree structure. Then the posteriors
can be computed with an additional downward recursions based on the βu(i)
values [4]. Due to space limitations, we briefly discuss only the resulting update
equations: further details can be obtained from the BHTMM technical report1.

The parameters of the upwards recursion are recursively computed as

βu(i) =
P (yu|Qu = i, xu)

∑L
l=1 P (Su = l)βu,chl

(i)∑C
j=1 P (yu|Qu = j, xu)

∑L
l=1 P (Su = l)βu,chl

(j)
, (2)

where βu,chl
(j) =

∑C
j=1 P (Qu = i|Qchl

= j, xu)βchl
(j) is an auxiliary parameter.

For leaf nodes the numerator in (2) reduces to P (yu|Qu = i, xu)P (Qu = i|xu).
The upwards pass concludes at the root node, where we start the downward
recursion by setting ε1(i) = β1(i) (follows from its definition). For each child
node chl, going downwards, we compute the joint posterior

εlu,chl
(i, j) =

εu(i)βchl
(j)P (Su = l)P (Qu = i|Qchl

= j, xu)∑L
l′=1 P (Su = l′)βu,chl′ (i)

(3)

and obtain the posterior εchl
(j) by marginalization. Parameter update is com-

puted at the M-step: for an IO-BHTMM model this can have an exact analytical
solution depending on the form of the input/output labels. Here, we consider
discrete input and output labels drawn from a finite multinomial alphabet, which
ensures a closed-form solution for the M-step. The resulting update equations
can be straightforwardly obtained from the posterior in (3) (see [1] for details).

1www.di.unipi.it/~bacciu/TRBHTMM.pdf
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For instance, for a multinomial input label, the update equation for the input-
conditional state-transition is

P (Qu = i|Qchl
= j, xu) =

∑N
n=1

∑
u∈Un

σn
ukε

l,n
u,chl

(i, j)∑N
n=1

∑
u∈Un

∑N
j′=1 σ

n
ukε

l,n
u,chl

(i, j′)
. (4)

where σn
uk = 1 if xu = k in the n-th tree and σn

uk = 0 otherwise.
A trained IO-BHTMM can be used to predict an output structure, given a

new input tree, by means of the Viterbi recognition algorithm. By drawing on
the reversed Viterbi in [4], we devise a recognition algorithm for IO-BHTMM
that is capable of estimating the most likely joint assignment of hidden states
q∗ and output structures y∗, given an input tree x. In other words, we seek

max
y,q

P (y,q|x) = max
i

⎧⎨
⎩δu(i) max

y1\CH(u)
q1\u

{
P
(
y1\CH(u),q1\u|Qu = i,x1\CH(u)

)}⎫⎬⎭ ,

(5)
where CH(u) is the set of all children of node u, yCH(u) denotes the output
subtrees rooted at each of the child of u, while y1\CH(u) is the observed tree
without the child subtrees of node u. The maximization in (5) can be efficiently
computed by an upward recursion exploiting the recursive term

δu(i) = max
yCH(u),qCH(u)

P (yCH(u),qCH(u), Qu = i|xu)

= max
j1,...,jl
y1,...,yl

{
L∑

l=1

P (Su = l)P (Qu = i|Qchl
= jl, xu)

L∏
v=1

P (ychv |jv, xchv )δchv (jv)

}
.

The basis of the recursion is at the leaves where δu′(i) = P (Q′
u = i|xu), that

is equivalent to the input-conditional prior. The δu(i) recursion ends at the
root, where the second term in (5) evaluates to maxi1,y1 P (y1|Q1 = i1, x1): an
additional downward recursion allows to select the most likely hidden state and
output label for the rest of the nodes. The δu(i) maximization can be efficiently
approximated as in [4] by treating the contribution of each child in separation,
i.e. allowing a parent node u to separately determine the maximum il and ychl

for each children chl, using such estimated values to compute δu(i).

3 Experimental Analysis

Experiments on two data sets from the 2005 and 2006 INEX Competition [5]
have been performed to benchmark IO-BHTMM against the BTHMM [4] and
the top-down HTMM model (THTMM) [6] on classification tasks. INEX 2005
comprises 9, 361 trees, 11 classes, with 366 possible node labels. INEX 2006
comprises 12, 107 trees, 18 classes, and 65 possible labels. Standard training
and test sets are available for both datasets [5], with a 50%-50% split. IO-
BHTMM has been trained to transform an input INEX tree into an isomorphic
output tree having the corresponding class label on each of its nodes. Given
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the discrete nature of the input/output labels, all the IO-BHTMM distribution
can be modeled by multinomials. Prediction for a test tree is obtained by gen-
erating the output tree with the Viterbi. Two approaches have been tested:
the former (root) categorizes the test tree with the label predicted by the root;
the latter (vote) selects the most voted label among the nodes. A different
BHTMM/THTMM model has been trained for each class: test predictions are
obtained by selecting the model with the highest Viterbi likelihood. Table 1
shows the classification error on the test set, averaged over 5 repetitions, as a
function of the hidden states’ number C. Results on INEX 2005 highlights that
IO-BHTMM can successfully exploit the discriminative information in the input
labels, when enough hidden states are provided. Notice that different classes
have almost identical distributions of the input labels: hence they are not, by
themselves, discriminative. IO-BHTMM consistently reduces the error even if
forced to encode the input structures within a state space smaller than the class
number (C = 10 vs. 11/18 classes), thus achieving a notable compression of the
structural information. The error reduction is statistically significative, as shown
by the non-overlapping error intervals (in brackets). Conversely, BHTMM and
THTMM use up to C = 10 states per class, as there is a different model for each
class, with no clear advantage: note that when C = 2, IO-BHTMM has only 2
states to encode 11 classes while BTHMM and THTMM have 2× 11 states. In
INEX 2006, IO-BHTMM does not show a clear advantage over BHTMM, given
that it is an extremely challenging benchmark with a random classifier baseline
of 5.5%. Moreover, the beneficial effect of input-conditioning is mitigated by
the characteristics of the INEX 2006 input labels, that are fewer and less dis-
criminative that those of INEX 2005. In an attempt to allow more space for
coding the substructures, we have increased C up to 20 states: only INEX 2005
benefitted, with the mean classification error dropping to 9.82%, while INEX
2006 maintained a 72.53% error. We have also tested a different encoding for
the output tree, where a node u emits a vector of booleans such that the k-th
label component is equal to 1 only if the substructure rooted in u can be found
in trees of class k. This task is modeled by an emission comprising K = 18
independent binomials: again no clear reduction of the classification error has
been shown on INEX 2006, although such an approach can be useful to shed
light on discriminative substructures in the data.

4 Conclusion

We have proposed a novel input-driven generative model for structured data.
The results of a preliminary experimental assessment show a good potential
in capturing more discriminative structural information than its homogenous
counterpart. Indeed, the proposed approach seems more effective when the
input labels encode some form of discriminative information. In the proposed
classification scenario, the voting mechanism seems to have a clear advantage
over the root-only prediction: this is motivated by the fact that the output
predicted for the substructures is often coherent with the target classification,
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Hidden IO-BHTMM BHTMM THTMM
States root vote

INEX 2005

C = 2 38.09 (1.24) 32.60 (2.24) 32.20 (7.17) 34.28 (5.66)
C = 4 27.09 (4.86) 19.66 (2.17) 24.98 (5.89) 23.40 (4.89)
C = 6 16.45 (2.84) 15.10 (2.77) 22.91 (3.64) 30.50 (9.33)
C = 8 16.43 (3.88) 13.31 (2.75) 18.11 (3.02) 27.36 (6.53)
C = 10 12.18 (3.57) 11.43 (2.93) 18.93 (3.18) 28.92 (4.53)

INEX 2006

C = 2 83.05 (4.34) 76.28 (0.99) 73.81 (0.67) 76.70 (2.72)
C = 4 76.60 (0.63) 75.01 (0.83) 76.50 (2.79) 77.87 (2.91)
C = 6 75.18 (1.74) 74.94 (0.95) 74.25 (2.99) 76.73 (1.93)
C = 8 74.58 (1.17) 73.90 (0.47) 74.02 (0.79) 77.18 (2.66)
C = 10 73.23 (1.26) 72.77 (0.88) 73.06 (2.78) 77.90 (1.83)

Table 1: Results on the INEX 2005 and 2006 datasets: average classification
error on the test set (best in bold); standard deviation is between brackets.

even when the root node emits the incorrect output label. This is the result of the
contextualized predictions generated by the Viterbi, where the outputs predicted
in a substructure are interpreted on the basis of the label generated for their
parents. Hence, non-discriminative substructures recurring over different classes
tend to be appropriately contextualized, yielding to correct predictions. This
marks a notable advantage over the homogenous BHTMM and THTMM, where
each competing model is trained only on positive examples from a target class.
As a result, the homogenous models tend to get confused by non-discriminative
substructures, yielding to high likelihoods also for trees outside their target class.
Overall, the experimental results suggest that input-driven generative models
have a good potential when applied to tree-structured data. Based on this
results, we intend to tackle the long-standing open problem of learning non-
isomorph input-output transformations for tree-structured data [7].
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