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Abstract.

Neurophysiological findings suggest that the visual cortex of mammals
contains neural populations that are sensitive to specific motion patterns.
In this paper, we present a new method to learn such patterns in an un-
supervised way. To represent motion, dense optical flow fields of videos
containing humans performing several actions like walking and running
are estimated. We introduce VNMF, an extension of the translation in-
variant NMF that works on flow fields, along with a new energy term
that enforces parts-basedness. VNMF incorporates three principles found
in neural motion processing: Sparsity, non-negativity and direction selec-
tivity. We find that the extracted motion patterns are shaped like body
parts, which supports the idea that the representation of biological motion
is directly linked to the shape of an object.

1 Introduction

The perception of biological motion is an important capability for humans as
well as for artificial vision systems. Therefore it is researched in a variety of
disciplines, such as neurophysiology, psychology and computer vision.

There is an ongoing discussion in neurophysiology about how biological mo-
tion is represented. The point-light-walker experiments of Johansson [1] seem
to indicate that the movement of the joints or body parts alone are sufficient
to describe human motion. Other theories favor the idea that human motion
can be represented as a time sequence of body shapes[3]. They refer to studies
of patients whose early motion processing areas (MT,MST) were damaged, but
who could still perceive biological motion. For a survey on the discussion see
e.g. Blake et al.[7]. It seems plausible that both, the body shape as well as the
specific movement of the body parts, contribute to the recognition of complex
motion.

Following this idea we try to learn representations of biological motion based
on dense optical flow fields that encode the motion of each pixel in the image. We
found that our learned optical flow components are shaped like the underlying
body structure of humans and are therefore suited to simultaneously represent
the motion as well as the shape, even without using explicit appearance proper-
ties such as color or texture.

In related work Black et al. [6] learned optical flow models using principal
component analysis (PCA) on videos of walking humans. Their extracted mod-
els are holistic rather then parts-based and do not have sparse activity patterns.
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Dean et al. [10] used an extended version of the sparse coding (SC) algorithm by
Olshausen et al. [4] to extract basic space-time volumes out of videos including
human motion. Eggert et al.[11] combined SC with the non-negative matriz
factorization (NMF) of Lee et al.[5] and translation invariance, allowing the
reconstruction to position basic components at arbitrary locations. NMF adds
non-negativity constraints to the activities and the basis vectors to achieve a
more parts-based decomposition of the input. Based on these constraints, Lee
et al. [5] developed a multiplicative gradient descent which speeds up the mini-
mization process significantly.

The contribution of this paper is threefold. We extend NMF to work on
vector fields, introduce a new orthogonality term to enforce parts-basedness and
finally learn basic motion components from human motion sequences which allow
a sparse and parts-based composition of motion patterns.

2  Vector NMF (VNMF)

SC is based on the idea that each input image V; € R¥ out of a set of images
VY € RPX! | with P = number of pixels and I = number of input images, can be
represented as a weighted sum of basis vectors, V; ~ R,; = Zj H;;W ;. The SC
algorithm from Olshausen et al. [4] minimizes the energy function

1
E:ERJF)\HEH:§Z||Vi*ZHMWH@JF)\HZWMM, (1)
i J 2%
by iteratively updating the activities H;; and the basis vectors W via gradient
descent. We now add non-negativity constraints to V; > 0, W; > 0 and H;; > 0.
Based on these constraints we can use the update rules
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with (VE){”OS’"@} being the positive or negative contribution to the gradient

of E: VE = (VE)P°* — (VE)™9. This leads to the well-known NMF update
equations as introduced by Lee et al. [5] including sparsity.

Hij — Hij ® W]' — Wj ® (2)

2.1 Translation Invariance

Dean et al.[10] report that randomly choosing samples in images is inappro-
priate to learn sparse representations of motion. Therefore they use a feature
point extractor to find areas with interesting motion patterns which they use
as input for their algorithm. The extracted basis vectors then depend on the
reliability of this preprocessing, which is not desirable. We overcome this pre-
processing step by using a translation invariant version of the NMF [11]. For
this purpose, instead of approximating the reconstruction by R; =  Hi; W
we use R; = Zj,m Hi(;@)T(m)Wj, where each T(m)Wj describes a translation
of the basis vector W; by a translation vector m, and each transformed basis

vector is weighted by its translation-specific activity H. Z(;' 2
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2.2 Non-negativity via Direction Specific Features

Unlike images, flow fields V , with d € {z,y}, can have positive and negative
values. The shift invariant SC energy equation for flow fields with HZ(Jm ) >0is

Z Ve - ZH m)T(m)WdHQ T Ay Z H(m . (3)

i,7,m

We now want to keep the parts-based properties from non-negative decompo-
sition algorithms for flow fields. Our approach is motivated by neurophysiological
experiments of Haag et al. [2] who show that early motion processing includes
four direction-specific input layers. Each layer represents one of the four main
directions of motion: up, down, left and right. In analogy to Ding et al.[8] we
use a semi-NMF by seperating the two components V¥ and V! of each optical
flow field into a positive and negative component,

V] + (V)
2 b

(Vx| = (V)x
2 )

Vi), (Vi) = 0

for every pixel x € {1,..., P} and obtain the four features V& > 0, with
s € {+,—}. The input is now represented as V¢ = V;.“ — Vf-l_ and consists of
four feature planes. The same yields for the reconstruction R¢* and the basis
vectors W?S.l We now introduce two energy functions based on the translation

invariant NMF and the direction specific feature planes. The first is

B =3 3 (Ive - S HGITW ) 5)

i,d,s J,m

which implies that there is no overlap between the feature planes. We call
VNMF1 the algorithm that minimizes F = Eg) + AgFy. VNMF?2 is the algo-
rithm minimizing E = ES + Ay By with

E(2 Z ||Vd+ Vd7 Z o m)T(m)(Wd+ Wd ||2 (6)

i,d i,m

For egs. (5) and (6) we additionally have introduced normalized basis vectors
W?S, which following the derivations from [11], lead to a modification of the
gradient-based update equations from eq. (2). Here it is important to note that
each basis vector has to be normalized over all feature planes, not each plane for
itself.

The VNMF?2 eq. (6) corresponds to the multiplane version of translation in-
variant SC eq. (3) extended by an inherent basis vector normalization, with two
important additional points to consider. First, the features W?Jr and W}ii are
initialized and updated separately. Second, the gradients VW;;SE can be split

up into (Vyas E)P°®) and (Vyyas E)9) which allows us to use the update rules
from eq. (2).

However we remark that only one common activity H Z(Jm) is used for all four planes.
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2.3 Orthogonality between the Reconstructions

To enforce a more parts-based decomposition we introduce a new energy term

By =2 > (IRE3 = D1 W)3). )
jm

i,d,s

With FE), we penalise the overlap between the partial reconstructions and there-
fore enforce a parts-based characteristic of our decomposition. Unlike orthog-
onality between the basis vectors as used by Choi [13], this energy function is
driven by the activities. If an activity is present, the constraint on the partial
reconstructions suppresses other activities in the spatial surrounding outlined
by the corresponding basis vector. This leads to even sparser activity patterns.

Data SC VNMF1 VNMF1 + Ep VNMF2 VNMF2 + Ep

Fig. 1: Example data and extracted basis vectors. The lower row shows the
reconstruction R and the superposition of all activities H for one input V.

3 Comparison of the Methods

In the following, we will apply different basis vector decomposition methods on
motion data: The translation invariant version of SC eq. (3), VNMF1 eq. (5),
VNMF?2 eq. (6) and VNMF1 resp. VNMF2 with the new parts-based constraint
eq. (7). We use an artificial dataset consisting of 100 vector fields, where each is
a superposition of two out of four basic horizontal or vertical bars, with motion
vectors into positive or negative orthogonal directions respectively, that are ran-
domly choosen and shifted (see Fig.1 for example vector fields). To make the
effects of the energy functions comparable we used a gradient descent with fixed
step size for all experiments2. We ran each decomposition until the mean recon-
struction error per pixel reached a value of 0.01. Fig. 1 shows the four resulting
basis vectors as extracted by each algorithm (top) as well as an example recon-
struction along with the superposition of its corresponding activities (bottom).
While all methods were able to reconstruct the input, neither SC nor VNMF?2
were able to retrieve the original sources. Either the non-negativity constraint
due to the direction specific energy function of VNMF1 or the orthogonality
constraint eq. (6) on the reconstruction is required.

2Parameters: Ag = 0.1, Ap = 0.5, Stepsize: Ay = 0.1, Ay = 0.01.
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(b) VNMF1 without Ep

Fig. 2: (a) Decomposition of a single walking frame with VNMF1+E,. H dis-
plays the superposition of all activities in one image. The marked activities H
fulfill H; > 0.2 maxjym(Hi(;n)). (b) The decomposition of the same frame,
but without the parts-based term E,. (c) Reconstructions of three consecutive

frames with marked H,. (d) Enlarged view of a subset of the basis vectors W
learned with VNMF1+E,,.

4 Extraction of sharply localized Motion Components

From Fig.1 it can be seen that, even though the reconstructions as well as the
basis vectors are retrieved by both VNMF1 and VNMF1+E,,, VNMF1 exhibits
spurious activity traces. That is, the activity is sparse but not sharply localized,
whereas for VNMF1+4-E,, we get almost binary activities which are better suited
for parts-based representations. To confirm these observations for more realistic
data, we tested the VNMF1 and VNMF1+FE,, algorithm with the NMF update
rules of eq.(2) on the Weizmann human action recognition dataset [12] which
consists of videos with 9 persons performing 10 different actions, like walking,
running, waving, jumping, etc. As a preprocessing step, we estimated the optical
flow field using the algorithm of Sun et al.[9]. A subset of the learned basis
vectors and results for a typical parts-based decomposition of a motion frame
are shown in Fig. 2.

The dominant activities H; in Fig. 2(a) are localized on different body parts,
in particular the head (%), the arm (0), the upper legs () and a foot (A).
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The corresponding basis vectors represent parts of the flow field, and thus are
shaped like body parts. The effect of the parts-based energy term E, eq.(7)
can be seen by comparing Figs. 2(a) and (b). While the reconstruction is very
similar, the basis vectors and especially the activities differ. Fig.2(a) shows a
smaller number of dominant, but sharply localized activities, which due to the
E, term suppress other activities in their surrounding, whereas the activities in
Fig. 2(b) are much more distributed.

5 Summary

We have shown that the shape as well as the motion of rigid body parts can
be extracted by an extension of the NMF class of algorithms, which includes
sparseness, translation invariance and parts-basedness. The gained activities
result in a sparse representation similar to point light stimuli, but which encode
localized moving body parts, as shown in Fig. 2(d).
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