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Abstract. In this paper, we give a short review of recent developments
in clustering. We shortly summarize important clustering paradigms be-
fore addressing important topics including metric adaptation in clustering,
dealing with non-Euclidean data or large data sets, clustering evaluation,
and learning theoretical foundations.

1 Introduction

Data clustering constitutes one of the most fundamental problems tackled in
data mining as demonstrated by numerous algorithms, applications, and theo-
retical investigations covered in review articles or textbooks such as [43, 55, 38,
101, 98, 49]. Applications can be found in virtually every possible area such as
bioinformatics, economics, robotics, or text and web mining. With electronic
data sets becoming larger and larger, the need of clustering algorithms as a first
step to make large data sets accessible is even constantly increasing.

The aim of clustering is often informally characterized as the task to de-
compose a given data set into subsets such that data are as similar as possible
within clusters, while different clusters are separated. Apart from this informal
description, however, there does not exist a single formalism, algorithm, or eval-
uation measure for clustering which is accepted as universally appropriate. The
main reason behind this observation is given by the fact that clustering per se
constitutes an ill-posed problem: the notion of what is a valid cluster and, in
consequence, what is an appropriate clustering algorithm to detect such clusters
depends on the application at hand. As such, eventually, clustering has to be
designed for and evaluated in a given specific setting [40]. There cannot exist a
universally suited algorithm or paradigm since the notion of a valid cluster can
change from one application to the other and a cluster might be valid in one
setting while it only accumulates noise in another.

Nevertheless, there exist many popular paradigms how to formalize clustering
and how to derive a method thereof with a wide range of successful applications,
reaching from popular K-means clustering to model based approaches or graph
theoretic methods. In addition, many different evaluation measures of clustering
results exist which are vital to quantitatively compare clustering results and to
automatically optimize meta-parameters such as the number of clusters, see e.g.
[4, 69]. More and more clustering techniques are dedicated to challenges which
arise in modern data sets such as very high dimensional data, non-Euclidean
settings, or very large data sets. In addition, quite interesting theoretical results
have recently been developed which shed some light on the process of cluster-
ing from a statistical learning perspective, formalizing principles such as the
generalization ability and axiomatic characterizations of clustering techniques.
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2 Clustering techniques

Clustering deals with the problem, given a set of n data points {x1, . . . , xn}, to
divide this set into K homogeneous groups. Often, the number of clusters K is
thereby fixed by the user a priori. The definition of what means ‘homogeneous’
constitutes a key issue to turn this informal description into a concrete algorithm.
One of the most popular clustering algorithm, K-means clustering, relies on the
assumption that data are given by Euclidean vectors in R

p. d(xi, xj) refers to
the dissimilarity given by the squared Euclidean metric in this vector space. For
K-means, the clusters are represented by prototypes w1,. . . , wK in R

p. Every
prototype defines its receptive field R(wi) = {xj | ∀k d(wi, xj) ≤ d(wk, xj)}.
Clustering aims at a minimization of the quantization error

EQE =
1

2

K∑
i=1

n∑
j=1

1xj∈R(wi)d(wi, xj) .

There exist basically two different ways to optimize this cost function: an online
approach, usually referred to as vector quantization; here a stochastic gradient
descent is used, i.e. given a random data point, the respective closest prototype
is adapted into the direction of the data point. Batch clustering leads to the
classical K-means algorithm where, in turn, data are assigned to the closest
prototypes and prototypes are relocated to the centre of gravity of their receptive
field. Both algorithms converge to local optima of the cost function, provided
the learning rate of online vector quantization is chosen appropriately. Often, K-
means converges very fast, but it can take an exponential number of steps in the
worst case even if only two-dimensional data are dealt with [89]. Convergence of
K-means can also be proved if a general Lp metric is used instead of the standard
Euclidean distance [83]. Note that clustering constitutes an NP hard problem if
referring e.g. to the quantization error even in the plane, such that convergence
to local optima is likely unavoidable [64]. Nevertheless, various heuristics of how
to better initialize prototypes have been proposed [52].

Based on the basic quantization error, many extensions have been proposed.
This concerns fuzzy variants of the algorithm, allowing a fuzzy membership de-
gree of data points to the clusters [76]. Apart from a more general notion of a
cluster, fuzzy K-means is less sensitive to prototype initialization. Alternative
extensions take into account neighborhood relations of the prototypes, such as
proposed in Neural Gas [66]. Besides better insensitivity to initialization, neural
gas allows to extract further information corresponding to the topographic struc-
ture of the underlying data set. The self-organizing map (SOM) [55] integrates
a priorly fixed neighborhood structure, a regular low-dimensional lattice, in a
similar way. This way, additional functionality in the form of a data visualiza-
tion is offered, but, due to topological restrictions, usually more prototypes are
needed. Therefore, SOM is usually used as a first step only and it is combined
with a merging of prototypes afterwards [90]. As a side effect, the final number
of clusters is determined by the model itself. A similar effect is reached by grow-
ing techniques which adapt the necessary number K of clusters while training,
this way also improving the insensitivity to prototype initialization [60].

K-means clustering usually severely suffers from initialization sensitivity which
is partly overcome by continuous extensions to neighborhood incorporation or
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fuzzy labeling. An alternative is offered by techniques which do not change the
cost function itself, rather they use continuous optimization techniques to opti-
mize the discrete quantization error. A fundamental approach has been proposed
in [80] where the principle of deterministic annealing is transferred to the range
of clustering. An alternative way is taken in [31]: Affinity propagation treats the
quantization error as a factor graph for which an approximate solution can be
obtained by means of the max-sum algorithm. As side effect of this formaliza-
tion is the observation that the number of clusters need not be specified a priori,
rather it is determined by the self-similarities of data points which correspond to
direct costs for the found clusters. An even more advanced approach based on
deep insights into statistical physics is offered by super paramagnetic clustering
as proposed in [10]. Given a clustering objective, metaheuristics such as genetic
algorithms or swarm intelligence can be used as a powerful but possible time
consuming alternative to turn these costs into a clustering algorithm [68].

A fundamentally different cost function forms the base of spectral techniques.
Here, data points are identified with vertices in a graph; possibly non-Euclidean
pairwise similarities (rather than dissimilarities) s(xi, xj) give rise to weighted
edges in the graph. A clustering corresponds to a decomposition of the data
{x1, . . . , xn} into clusters I1, . . . , Ik such that as few vertices as possible are cut
by means of this decomposition. The so-called graph cut measures the costs

ECUT =

K∑
i=1

∑
xj∈Ii,xk 6∈Ii

s(xj , xk) .

It turns out that this simple cut is usually not a desirable objective, because it
favors highly unbalanced clusters. Therefore, the so-called normalized or ratio
cut are taken which normalize every summand by its size or its accumulated ver-
tex degree, respectively. Similar to the optimization of the quantization error,
optimization of the normalized or ratio cut is NP-hard, such that approxima-
tions are used. Spectral clustering is based on the observation that the cut
can equivalently be formulated as an optimization problem of an algebraic form
induced by the graph Laplacian over the set of vectors with entries 0 and 1.
A continuous relaxation of this problem can be solved by the eigenvectors of
the graph Laplacian. To turn this relaxation into a crisp clustering assignment,
simple k-means is usually used to decompose the points induced by the eigen-
vector components. An overview of spectral clustering as well as its convergence
properties can be found in [91, 93]. Often, the similarities s of the cost function
are based on local neighborhood graphs; consistency of this construction can be
proved under certain conditions [65]. Clustering techniques such as [61] rely on
the same objective as spectral clustering but they compute the eigenvectors by
means of different techniques e.g. based on a von Mises iteration.

An alternative principled formalization of clustering is offered by generative
or model-based clustering, which has been widely studied by [30, 70], for exam-
ple. In its simplest form, data are modeled as a mixture of Gaussians. Assuming
that {x1, ..., xn} are independent identically distributed realizations of a random
vector, the mixture model density is given as

p(x) =

K∑
k=1

πkf(x; θk),
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where f(.; θk) is the multivariate Gaussian density φ(.;µk,Σk) parametrized by
a mean vector µk and a covariance matrix Σk for the kth component and πk

is the class prior. This objective can be optimized by a standard expectation
maximization (EM) algorithm. Once the model parameters are estimated, the
maximum a posteriori (MAP) rule provides the partition of the data into K
groups. Interestingly, in the limit of small bandwidth, the classical K-means
algorithm is recovered this way. Extensions of this model change the proba-
bilities according to the given setting, e.g. substituting Gaussians by binomial
distributions for a latent trade model or integrating neighborhood cooperation.

Besides clustering models based on cost function, a variety of popular iter-
ative clustering schemes exists. DBSCAN [82] constitutes a very efficient algo-
rithm which is particularly suited for large data sets and priory unknown cluster
shapes,. It relies on an iterative enlargement of clusters based on an approxima-
tion of the underlying data density. The approach [38] formalizes cluster costs in
an information theoretic way using the Renyi entropy, and iteratively optimizes
cluster assignments based on this notion. Popular hierarchical clustering tech-
niques such as linkage methods arrive at a hierarchy of clusters by an iterative
greedy combinations of clusters, starting at the given points [43]. Under strict
assumptions on the metric (such as an additive or ultrametric), they provide the
correct result, but they are very sensitive to noise in the general setting.

Note that quite a variety of standard clustering algorithms has been extended
to yield hierarchical results, including spectral clustering or affinity propagation
[37, 21]. A hierarchical graph clustering scheme is also proposed in this volume
[25]. Further variations on the basic clustering objective aim at a more advanced
scheme, such as co-clustering, i.e. the simultaneous clustering of objects and
object features [22], outlier detection which is essentially a one-class clustering
problem [15], or clustering with simultaneous dimensionality reduction [26].

3 Metric adaptation and variable selection

All clustering techniques severely depend on the given metric used to compare
pairs of data. In many settings, the dissimilarity measure is given by the stan-
dard Euclidean distance, which encounters problems in particular for very high
dimensional data. In consequence, many approaches address the metric used to
compare the data and try to adapt it such that the resulting clustering structure
is more pronounced. Recently, several authors have been interested to simultane-
ously cluster data and reduce their dimensionality by selecting relevant variables
for the clustering task. The clustering task aims therefore to group the data on a
subset of relevant features, resulting in an improved quality and interpretability.
A recent overview about different feature selection techniques and a connection
to supervised feature selection can be found in [62].

For model based clustering, variable selection can be tackled within a Bayesian
framework [78, 67]. Maugis et al. [67], consider three kinds of subsets of variables:
relevant variables, irrelevant variables which can be explained by a linear regres-
sion from relevant variables and finally irrelevant variables which are useless for
the clustering. The models in competition are selected using the BIC criterion.
In the Gaussian mixture model context, Pan and Shen [77] introduced a penalty
term in the log-likelihood function in order to yield sparsity in the features and
to select relevant variables. Witten and Tibshirani [96] proposed a general non-
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probabilistic framework for the variable selection problem which is based on a
general penalized criterion and governs variable selection and clustering.

However, such approaches have two limitations: they remove variables which
are possibly discriminative for the clustering and they are time-consuming. Ex-
tensions simply adapt the metric to a more appropriate form, whereby a more
general view can be taken than the deletion of input variables. Particularly use-
ful alternatives are offered by a weighted Euclidean metric or a general quadratic
form. Thereby, metric parameters are adapted automatically based on the given
setting at hand. Relevance learning, i.e. the adaptation of diagonal terms accord-
ing to the relevance of the considered dimensions, has been introduced in [46]. In
the contribution [36] in this volume, relevance parameters are adapted according
to auxiliary supervised information, resulting in a powerful data representation
scheme adapted to the given semi-supervised setting.

The adaptation of full matrices has been mathematically investigated in [3],
among others, in the context of K-means and extensions. It turns out that local
principal components are detected this way. Thus, the result resembles the result
of subspace clustering techniques which explicitly project the given data locally
onto meaningful low dimensional subspaces. In the context of model-based clus-
tering, early strategies [81] are based on the factor analysis model which assumes
that the latent space is related to the observation space through a linear rela-
tionship. This model was recently extended in [71] and yields in particular the
well known mixture of probabilistic principal component analyzers [87]. Recent
work [13, 72] proposed two families of parsimonious and regularized Gaussian
models which partially encompass previous approaches. These techniques are
very efficient for high-dimensional data. Despite this fact, these probabilistic
methods mainly aim at clustering, neglecting visualization or interpretability.

4 General metrics and non-Euclidean settings

Besides adaptive Euclidean metrics to enhance the representation capacity of
clustering algorithms in Euclidean space, more and more algorithms deal with
more general non-Euclidean data such as discrete sequences or tree structures,
time series data, or complex data for which a dedicated dissimilarity measure is
appropriate. Some techniques extend given clustering formalisms to dedicated
data formats, such as extensions to time series data by means of recursive pro-
cessing [42], algorithms for chains of data [88], or algorithms for categorical data
[47]. We refer for instance to [95] for a survey on time series clustering.

Another very important data format concerns functional data which display
an infinite dimensionality in the ideal setting. Non-parametric approaches to
functional clustering, as for instance [27, 85], lead to powerful clustering algo-
rithms. In contrast, model-based clustering techniques for functional data have
interesting interpretability properties. Unlike in the case of finite dimensional
data vectors, model-based methods for clustering functional data are not directly
available since the notion of probability density function generally does not exist
for such data [20]. Consequently, the use of model-based clustering methods
on functional data consists usually in first transforming the infinite dimensional
problem into a finite dimensional one and then in using a model-based clustering
method designed for finite dimensional data. The representation of functions in
a finite space can be carried out by FPCA [79], projection on a basis of natural
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cubic splines [94] or using ARMA or GARCH [32] models. Recently, two new
approaches [50, 14] allow the interaction between the discretization and the clus-
tering steps by introducing a stochastic model for the basis coefficients. Another
method [48] of this type is proposed in this volume which approximates the den-
sity of functional random variables using the functional principal components.

A very general interface to complex data is offered by the notion of similarity
or dissimilarity. Techniques such as affinity propagation, spectral clustering, or
agglomerative methods can directly deal with such settings, whereas prototype
based methods or model based approaches encounter difficulties, unless proto-
type positions are restricted to the given data points as proposed e.g. in [18].
A very general approach which implicitly refers to Euclidean data is offered by
kernelization, as proposed e.g. in [99, 12]. More general dissimilarities can be
treated by means of an implicit embedding of data into pseudo-Euclidean space,
where many standard techniques such as K-means, fuzzy clustering, and neural
gas can be applied. See e.g. [44, 41] for such algorithms and [41] for a mathe-
matical treatment of the convergence properties in such spaces. Often, instead
of the quantization error, its relational dual is considered, which is equivalent to
the quantization error if prototypes are located in cluster centers, as shown in
[41]:

Edual =
1

4

K∑
i=1

1

|Ik|

∑
xj∈Ik,xj′∈Ik

d(xj , xj′ )

Ik refers to the decomposition into clusters, and d to the given dissimilarity of
data points. Similar to the standard quantization error, its dual can be optimized
based on deterministic annealing techniques [45]. Since there does not yet exist a
universally accepted notion of a probability measure for pseudo-Euclidean space,
however, it is not clear in which sense these algorithms yield meaningful clusters.

A very interesting model for clustering relational data together with con-
vergence results has been proposed in [11]. The clustering method is capable of
recovering block structures in a relational data set provided blocks are connected
with low probability, but within blocks connection probabilities are higher. This
constitutes an interesting step towards an exact probabilistic modeling of what it
means that clustering relational data converges to a true underlying clustering.

5 Large data sets

Due to its wide usage, optimization techniques to make K-means faster are
common such as dedicated data structures which allow a fast neighborhood
determination [51]. With data sets becoming larger and larger, there is a need
for instantaneous or streaming algorithms which can deal with large data sets
in at most linear time and constant memory. For classical K-means, a couple
of efficient streaming methods have been proposed often accompanied by formal
guarantees [84, 39]. Alternatives with linear or even sub-linear effort can rely on
geometrical concepts known as core methods [5] or subsampling [6]. In addition,
many iterative methods have been directly designed for very large data sets such
as CLARANS, STING, or BIRCH [74, 2, 39].

The problem of large data sets is particularly pronounced if relational data
or kernel methods are dealt with, since the similarity or dissimilarity matrix
is already of quadratic size. Approximations are required to make the methods

452

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.



feasible for large data sets. Popular techniques can be found around two approx-
imation schemes: the Nyström approximation for kernel methods approximates
the dissimilarities by a low rank matrix; it has been introduced into spectral
clustering, for example [29]. Efficient decomposition techniques such as patch
processing have been proposed in [41]. In this volume, novel heuristics to speed
up relational clustering schemes are introduced in [17].

Often, parallelization schemes offer further speed-up, such as discussed in [41]
for patch processing. Cloud computing offers new opportunities as discussed in
[28]. However, a naive parallelization is not always successful, as demonstrated
in this session in the contribution [24] for the classical vector quantization.

6 Evaluation of clustering

As mentioned above, clustering is an ill-posed task. Hence an optimal cluster
partition as well as an optimum cluster number per se is not well defined without
further constraints. Nevertheless, there exist several approaches to evaluate and
compare the quality of a given cluster solution reflecting commonly accepted
aspects of clustering like separation and compactness of the clusters. Famous
measures are the Davies-Bouldin-index or the Xie-Beni-measure both relating
the within-cluster variances (compactness) to the inter-cluster variances (sepa-
ration) [19, 97]. Similar approaches which emphasize aspects like overlapping
clusters or different cluster shapes are presented in [23, 53, 58, 75].

Another group of evaluation measures is based on information theoretic con-
cepts. These approaches mainly judge the validity of a given cluster solutions
rather than a comparison of clusterings. Approaches relate to different kinds
of partition entropies most of them derived from Bezdek’s original proposal [8].
The underlying assumption is that an information optimum coding of data con-
stitutes a basic principle of clustering. Several measures are applicable to fuzzy
clustering [9, 97]. An extension which takes into account a dual step of topo-
graphic vector quantization and subsequent clustering has been proposed in [86].
A fuzzy counterpart of this idea is presented in [33] in this volume.

Another aspect of cluster evaluation is the determination of the appropriate
number K of clusters. Frequently, the above indices are also used to determine
K assuming that a good choice leads to a better evaluation measure. Alternative
ways to determine K inlcude the eigengap heuristics or spectral clustering [63]
or kernel based clustering [35]. In affinity propagation, the number of clusters is
controlled by self-similarities [31]. An estimator of the correct number K based
on a stability analysis of the cluster solutions is presented in [92].

A third class of evaluation measures relates to indices designed for cluster
comparison. Popular examples are variants of the Jaccard index, originally devel-
oped for the comparison of classifications but nowadays extended for clustering
comparisons [100]. Fuzzy variants based on t-norms are presented in [34]. Other
measures are based on extensions of Mallows distances [102] or they are derived
from lattice approaches [73]. Yet, these approaches can only reflect several as-
pects of cluster solutions. The final decision about an optimum task specific
choice eventually relies on the user.
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7 Learning theory of clustering and an axiomatic view

Starting with the popular approach of Kleinberg [54], there has been effort to
treat clustering algorithms in an axiomatic way and to characterize techniques
based on their axiomatic properties. Essentially, Kleinberg formalizes the fol-
lowing three axioms of clustering: scale invariance of the clustering algorithm,
richness that means its ability to reach all possible clusterings, and consistency
which refers to an invariance of results if within cluster distances are reduced
and between cluster distances are enlarged. Interestingly, it can be shown that
these three axioms cannot be fulfilled simultaneously. Recently, these axioms
have been further refined into interesting properties of clustering algorithms in
[7, 1]. Here, different properties of algorithms are specified including invariance
properties such as scale invariance, isomorphism invariance, or order variance;
consistency properties; and range properties such as the capability of reaching
every desired clustering. In the contributions [7, 1, 16] it is analyzed in how far
popular clustering algorithms including single and complete linkage or K-means
clustering possess these properties. As a result, a catalogue of important char-
acteristics of popular clustering algorithms is compiled which can help to select
an appropriate clustering scheme in a given setting.

Unlike for supervised machine learning, the question in how far clustering
techniques allow valid learning and generalization based on a finite set of given
data has long been an open question. A major problem consists in the fact that it
is not priorly clear what is the meaning of the generalization error of a clustering
and in how far does the notion of convergence provided the number of points gets
larger and larger make sense: since clustering refers to a discrete composition
of a set of data, there is no generic notion of convergence due to a lack of a
common vector space for different size data sets and clustering decompositions
in the general setting.

The situation is much clearer if a clustering algorithm which naturally gen-
eralizes to an embedding vector space is considered. The classical quantization
error, for example, can directly be extended to a continuous error

EQE =
1

2

K∑
i=1

∫
d(wi, x)1x∈R(wi)P (x)dx

where P is an underlying probability distribution of the given data space. It
has been shown in [6] that, provided data are i.i.d. a small empirical quanti-
zation error on a given training set also implies a small quantization error for
the underlying data distribution in this setting, hence the generalization ability
of K-means clustering can be guaranteed in this sense. These arguments can
be extended to clustering schemes provided that the clustering scheme can be
characterized by a local compression scheme (such as a prototype for K-means),
and that the expectation of the considered loss function can be computed by
means of a simple function which depends on this compressor only (such as the
quantization error for K-means). For clusterings characterized by general sets,
these properties are usually not fulfilled.

Alternative notions of how to formalize the generalization ability and consis-
tency of clustering schemes have been proposed for different scenarios. Consis-
tency of spectral clustering relies on the observation that the normalized graph
Laplacian converges to an operator on the space of continuous functions. This
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implies a convergence of the corresponding eigenvectors and eigenvalues, such
that a clustering induced by these eigenvectors has high probability to retrieve
the original clusters in the data space. For nearest neighbor based approaches,
consistency results have been investigated in [57] concerning hierarchical tree
structures derived from this information. This approach also proposes a prov-
ably correct algorithm to prune such trees such that the result corresponds to
the cluster tree as induced by the level sets of the underlying probability distri-
bution. These theoretical developments constitute very promising steps towards
a learning theory of unsupervised clustering.

8 Conclusions

We presented a short review about modern trends in clustering including chal-
lenging topics like non-Euclidean data, kernel clustering and metric adaptation.
Obviously, this short review can not be complete, referring to the cited literature
for further reading.
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