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Abstract. We address the problem of robust clustering of high - di-
mensional data, which is recurrent in real-world applications. Existing
robust clustering methods are unfortunately sensitive in high dimension,
while existing approaches for high-dimensional data are in general not ro-
bust. We propose a hybrid iterative EM-based algorithm that combines
an efficient high-dimensional clustering algorithm and the trimming tech-
nique. We test our algorithm on synthetic and real-world data from the
domain of aircraft engine health monitoring and show its efficiency for
high-dimensional noisy datasets.

1 Introduction

Given a setX = (x1, ...,xn) of p-dimensional vectors, clustering refers to the task
of partitioning X into K homogeneous groups. Clustering techniques proceed
in an unsupervised manner, that is they do not possess any information on
the true partition of the dataset. Many real-world datasets, for example those
obtained by measuring some physical quantities, can often be “contaminated” by
observations corresponding to extreme manifestations of the phenomenon being
measured or even with no relation to it. These observations are known under
the names “outliers”, “noise”, “anomalies”, “novelties” and many more.

Unfortunately, most general clustering algorithms are not robust to the pres-
ence of outliers in the dataset. In the past few years, there have been efforts to
develop robust clustering techniques that can be divided into two main families:
mixture-based (probabilistic) and trimming-based. On the one hand, robust
mixture-based methods consider an extra component admitting a uniform [1, 2],
an improper uniform [3] or a t-Student [4] distribution to model outliers. On
the other hand, there are methods that make use of trimming such as trimmed
K-means [5] and TCLUST [6]. The latter is an iterative EM clustering type
algorithm in which a predetermined proportion of outliers is being trimmed (re-
moved) from the dataset.

Moreover, model-based clustering methods suffer from the curse of dimen-
sionality, since they require an exponentially growing number of data points
with increasing dimension. A direct consequence when using generative models
is having to estimate a large number of parameters compared to the available
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data. Parsimonious mixture models [1, 7] address this issue by imposing con-
straints on the covariance matrices in order to reduce the number of parame-
ters that need to be estimated. Another reliable solution is subspace clustering
methods like HDDC [8] and Fisher-EM [9], which model and cluster the data in
low-dimensional subspaces.

The paper is structured as follows: Section 2 presents HDDC and its robust
version called HDRC. In Section 3 we present results on synthetic and real data
from the domain of aircraft engine health monitoring. Finally, in Section 4 we
briefly discuss future work and perspectives.

2 High-Dimensional Robust Clustering

2.1 Gaussian models for HD data and the HDDC algorithm

As in the classical Gaussian mixture model framework [10], HDDC assumes
that each of the K groups has a Gaussian density Np(μk,Σk) with means μk

and covariance matrices Σk , for k = 1, ...,K. Let Qk be the orthogonal matrix
with the eigenvectors of Σk as columns and Δk be the diagonal matrix which
contains the eigenvalues of Σk such that Δk = Qt

k Σk Qk. The matrix Δk is
therefore the covariance matrix of the kth class in its eigenspace. It is further
assumed that Δk can be divided into two blocks:

Δk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak1 0

. . .

0 akdk

0

0

bk 0

. . .

0 bk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎬
⎭ dk

⎫⎪⎪⎬
⎪⎪⎭

(p− dk)

(1)

with akj > bk, j = 1, ..., dk, and where dk ∈ {1, . . . , p − 1} is unknown. From
a practical point of view, one can say that the parameters ak1, ..., akdk

model
the variance of the actual data of the kth class and the unique parameter bk
can be viewed as modeling the variance of the noise. The dimension dk can be
considered as well as the intrinsic dimension of the latent subspace of the kth
group. By constraining model parameters between or across the groups, it is
possible to obtain several submodels from this model. A list of all submodels is
given in [8]. Notice that the family of submodels encompasses in particular the
general GMM (dk = p− 1) or the mixture of probabilistic PCA [11].

The intrinsic dimension and the number of groups cannot be estimated by
maximum likelihood since they both control the model complexity. In [8], the
authors proposed to estimate the dimensions dk, k = 1, ..., K through the Cat-
tell’s scree-test [12] which looks for a break in the eigenvalues scree. The selected
dimension is the one for which the subsequent eigenvalue differences are smaller
than a threshold. The threshold can be provided by the user or selected using
BIC [13]. The number of clusters K can be chosen thanks to the BIC crite-
rion as well. In the specific case of models where akj = ak or akj = a for
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k = 1, ...,K, j = 1, ..., dk, it has been recently proved by [14] that the maximum
likelihood estimate of the intrinsic dimensions dk is asymptotically consistent.

2.2 High-Dimensional Robust Clustering

We introduce a novel algorithm, called HDRC (High-Dimensional Robust Clus-
tering), which combines HDDC and the trimming technique, therefore resulting
in a robust clustering algorithm which is efficient for high-dimensional data. In
particular, we extend HDDC by adding an intermediate trimming step (T-step)
between the E- and M- steps of the EM part of the algorithm:

• The E step computes the posterior probabilities t
(q)
ik = P(Z = k|X = xi)

according to the model parameters estimated at iteration q − 1 through

the formula t
(q)
ik = 1

/∑K
�=1 exp

(
1
2 (Γ

(q)
k (x)− Γ

(q)
� (x))

)
where the classifi-

cation function Γ
(q)
k is as follows when akj = ak, k = 1, ...,K, j = 1, ..., dk:

Γ
(q)
k (x) =

1

ak
‖μk − Pk(x)‖2 + 1

bk
‖x− Pk(x)‖2

+dk log(ak) + (p− dk) log(bk)− 2 log(πk),

where Pk is the projection operator on the latent subspace of the kth class
and models parameters are estimated in the M step at iteration q − 1.

• The T step holds out of the dataset (trims) a fixed proportion of the data

points with smallest values for max
k=1,...,K

π
(q)
k f

(
x;μ

(q)
k ,Σ

(q)
k

)
which is equiva-

lent to trimming the data points with the largest values for min
k=1,...,K

Γ
(q)
k (x).

Let R(q) be the set of the trimmed data points.

• The M step then updates the estimates of model parameters by maximizing
the expectation of the trimmed complete likelihood conditionally to the

posterior probabilities t
(q)
ik for the data points xi /∈ R(q). Update formulas

for the parameters can be found in [8].

3 Experiments

We tested HDRC on synthetic high-dimensional data and real data from the
domain of aircraft engine health monitoring.

3.1 Application on synthetic data

For the synthetic dataset, we generated 3 multivariate Gaussians with a total
of 1000 data points according to the HDRC model in the p-dimensional space,
where p = 10, . . . , 100. The means and covariance matrices were chosen such that
the task would not be too challenging for the algorithms tested. In particular,
we set the parameters as follows: a1j = 150 and b1 = 15, a2j = 75 and b2 = 10,
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Fig. 1: Clustering accuracy (black solid boxes) and TPR of the outliers (red dashed
boxes) for the synthetic dataset, plotted against the dimension of the data. Black
circles correspond to extreme observations for the clustering accuracy, and red ’x’ to
those for the TPR of the outliers. For K-means with K=3 the TPR is artificially set
to zero (see the text for details).

a3j = 50 and b3 = 5, respectively, for the three Gaussians, where j = 1, . . . , dk.
The intrinsic dimensions dk were d1 = 10, d2 = 5 and d3 = 2 respectively. We
added a quantity of outliers equal to 5% of the dataset size, uniformly distributed
on the interval [−40, 40] for each of the p variables.

In the experiments, we tested K-means with K = 3 and K = 4, TCLUST
and HDRC. K-means was used as a baseline; we wanted to examine its behaviour
when it has no knowledge of the existence of outliers (K = 3) and when this
knowledge is given explicitly by adding an extra group (K = 4).

For TCLUST, we imposed a restriction on the eigenvalue ratio of the covari-
ance matrices. More precisely, the maximum value for the ratio of the maximum
to the minimum eigenvalue for the dimension p = 10 was set to 50, augmented by
50 for each dimension p thereafter. For HDRC we used a random initialization.
For TCLUST and HDRC algorithms, we set the number of groups to K = 3
(not counting the group of the outliers). Moreover, we supplied them with the
true outlier proportion, that is α = 0.05. For all the algorithms, the number of
initializations was set to 25 and the maximum number of iterations to 60.

For each value of p, we replicated the experiment 25 times. For each replica-
tion, we calculated the clustering accuracy (up to label switching) as the ratio of
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Fig. 2: On the left, plot of the engine speed variable. The red rectangle shows the area
where the anomalies occur. On the right, a zoom-in on this area: the litte “bump”
corresponds to an engine malfunction. HDRC with K = 7 detects succesfully the
anomalous data points (red ’x’). We underline that clustering was performed on the
p-dimensional space, where p = 173.

correct cluster assignments to the size of the dataset and the true positive rate
for the outliers (TPR) as the ratio of data points correctly detected as outliers
to the true number of outliers.

Figure 1 presents the clustering accuracy and the true positive rate for the
outliers for our experiments. We observe that K-means with K = 3 fails in clus-
tering correctly the data. Note that K = 3 indicates that K-means “naively”
tries to cluster data with outliers without being aware of their presence and
that is why we did not evaluate the TPR (artificially set to zero). We also
observe that even when an extra group is added to model the outliers (K = 4),
K-means does not do much better. As expected, TCLUST succeeds in detecting
the outliers in all cases but appears to be sensitive in dimension. The way we
simulated data, the outliers have a large variance and thus, it should be easy to
detect them correctly. This means that the mediocre performance of TCLUST
in clustering is, to a great extent, due to the high dimensionality of the data.
Finally, we see that HDRC succesfully manages to cluster the data and detect
the outliers even in high dimension.

3.2 Application to aircraft engine health monitoring data

In the aircraft engine domain, the monitoring of engine health is a crucial task.
SNECMA performs such tests in a test chamber environment. A multitude of
engine or test chamber parameters are measured, such as chamber pressure,
engine temperature, engine speed etc. The goal here is to be able to issue a
warning whenever there is a malfunction (anomaly) of the engine or the chamber,
before significant damage occurs to any of the two.

The dataset we consider here consists of 46 830 observations and 173 vari-
ables. Each test is a sequence of alternating stationary and non-stationary phases
at different levels. For this particular test series, we know that there has been a
malfunction and that the test sequence was stopped abruptly . We apply HDRC
to check if it will correctly detect the outlying observations (anomalies).
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As we can see in Figure 2, HDRC succeeds in detecting the outliers (the
anomalous behaviour). We underline that the clustering was performed in the
p-dimensional space, where p = 173, and that we plotted only one of the variables
in Figure 2 for visual clarity.

4 Discussion

We have presented a high-dimensional robust clustering algorithm, combining
HDDC and the trimming concept. We have shown its efficiency on noisy high-
dimensional synthetic datasets and on a concrete, real-world application. How-
ever, trimming-based robust clustering methods and HDRC assume that the
true outlier proportion among the data is known. In practice, this is rarely
true. Therefore, we need a procedure to select the proportion yielding the most
satisfactory results. We are planning to address this problem using model se-
lection techniques in future works. Moreover, preliminary experiments suggest
that both TCLUST and HDRC give less satisfactory results when outliers are
added in only some (not all) of the variables. We think that a variable selection
technique adapted to this specific task could boost their performance in this
case.
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