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Abstract. The paper presents an analog, current-mode circuit that cal-
culates a distance between the neuron weights vectors W and the input
learning patterns X. The circuit can be used as a component of different
self-organizing neural networks (NN) implemented in the CMOS technol-
ogy. In Self-Organizing Maps (SOM) as well as in NNs using the Neural
Gas or the Winner Takes All (WTA) learning algorithms, to calculate the
distance between X and W , the same circuit can be used that makes it
a universal structure. Detailed system level simulations of the WTA NN
and the Kohonen SOM showed that using both the Euclidean (L2) and
the Manhattan (L1) distance measures leads to similar learning results.
For this reason, the L1 measure has been implemented, as in this case the
circuit is much simpler than the one using the L2 distance, resulting in
very low chip area and low power dissipation. This enables including even
large NNs in miniaturized portable devices, such as sensors in Wireless
Sensor Networks (WSN) or Wireless Body Area Networks (WBAN).

1 Introduction

In today’s world there is a strong demand for new medical health care systems
that are able to provide continuous monitoring of persons that suffer from dif-
ferent disabilities, such as Cardio-vascular Disease (CVD), diabetes, etc. One of
new emerging solutions that are suitable for such purposes are Wireless Body
Area Networks (WBAN), as it has been well described by Latré et al. in [1].
A frequent monitoring of such persons possible in this case reduces, for exam-
ple, the risk of a sudden death due to the stroke. Looking at the problem from
another point of view, in the literature one can find many examples of using
artificial neural networks (ANNs) in the analysis of various biomedical signals
[2],[3]. Due to their high efficiency, ANNs are able to aid the medical staff in
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monitoring of patients. As ANNs are usually realized in software, this makes
rather difficult to use them in the monitoring systems based on WBAN.

The WBAN technology is currently intensively developed around the world
[1]. Such systems are composed of miniaturized wireless sensors placed on a
human body that communicate with a base station (master processing unit –
MPU). The currently used WBAN systems are based on relatively simple sensors
that usually perform only several basic tasks, such as: data collection, analog-to-
digital conversion (ADC), simple data preprocessing and conditioning. Finally,
using the radio frequency (RF) communication block data are being transmitted
to MPU for further detailed analysis. One of the main problems encountered in
such systems today is very large amount of energy lost (even 95% of total energy)
during the RF wireless transmission. For this reason we are considering a new
approach. The aim is to develop a miniaturized ultra-low power NN that will be
directly used, as an additional component, in particular sensors of the WBAN.
As a result, advanced data processing and analysis tasks will be performed at
the sensor level, while the RF block will be used only in emergency situations,
typically remaining in the ‘standby mode’. As the expected power dissipation
of the NN will be much smaller than those of the RF block, this approach will
reduce the energy consumed by particular sensors even by 70-90%.

The new approach requires using simple learning algorithms that can be
easily implemented in hardware, shuch as WTA NN or the SOM. In this case only
basic arithmetic operations such as addition, subtraction and multiplication, are
required. The Kohonen SOMs are commonly used, for example, in the analysis
and classification of the ECG signal [4] with the efficiency of up to 97 %. The
number of neurons required in this case usually does not exceed 150 [5] that
makes an implementation of such network in hardware feasible. An example
application of the Kohonen SOM in a wearable system is described in [4]. This
system, not wireless in this case, is able to recognize the most significant cardiac
arrhythmias. In this system, the NN is implemented on the MPU, while the
sensors are only used to collect data that are transmitted to MPU using wires.

The proposed distance calculation circuit (DCC) is very simple, containing
only 16 medium sized transistors per each x – w pair. As a result, the overall
NN will be small enough to enable using it in particular sensors in the WBAN.
This will make the systems like the one in [4] much more convenient in use.

2 The proposed analog Distance Calculation Circuit

Distance calculation circuit (DCC), which is the topic of this paper is one of main
components of hardware implemented self-organizing NNs. While designing this
block, first it is necessary to determine a proper distance measure between the X
and the W vectors. The simulations performed by means of the software model
of both the WTA NN and the Kohonen SOM show that using the Manhattan
distance (L1) does not negatively impact the learning process. Let us recall that
the L1 and the L2 distance measures are described, as follows:
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Fig. 1: General block diagram of the proposed analog, current-mode DCC

(a) (b)

Fig. 2: Main components of the proposed circuit: (a) current-mode comparator
(CMP), (b) absolute function block (ABS)

IL1 = k ·
m∑
i=1

|xi − wi,j | (1)

IL2 =

√√√√k ·
m∑
i=1

(xi − wi,j)2, (2)

In the L1 case we avoid using the squaring and the rooting operations, re-
quired to compute the L2 distance that significantly simplifies the overall struc-
ture of the DCC. Note that in (1) only summation and subtraction operations
are required. In this case using the current-mode approach is the most suit-
able, given the fact that these operations are realized simply in junctions. The
‘absolute’ function is realized in a very direct manner in the proposed circuit.

A general block diagram of the proposed DCC is shown in Fig. 1, while
components of this circuit are presented in Fig. 2. The main block of the DCC
is the ABS block (a) that calculates an absolute value of the (xi − wi,j) term
for each weight w. This block is controlled by a current-mode comparator (b)
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that compares a given input xi signal with the corresponding weight, wi,j . The
output signal of the comparator, si,j , controls the switches in the ABS block in
such a way that the larger current of each of the x – w pair is always added to the
junction A, while the smaller one is subtracted from this junction. The factor
k is a constant parameter determined by transistor sizing. The IABS i currents,
coming from particular ABS blocks, are summed in the output junction in each
neuron, providing the signal proportional to the distance measure.

The proposed ABS block, is kind of the rectifier. Many circuits of this type
have been described in the literature [6, 7], but the existing solutions are not
useful in this case. The proposed circuit calculates a rectified value of a difference
between two signals independently on which of them is greater. Additionally the
output signal from the comparator along with the η · (xi−wi,j) signal calculated
by the ABS block is being used by a subsequent adaptation block of the NN,
where the η parameter plays the role of the learning rate.

One of the advantages of the proposed circuit is parallel and asynchronous
data processing. For n inputs of the NN, each neuron contains n ABS blocks
working in parallel. A total number of such blocks in the NN equals m ·n, where
m is the number of neurons. All these blocks operate in parallel without using
the controlling clock. This substantially simplifies the structure of the circuit.
The number of transistors in a single ABS block does not exceed 20.

Another advantage of the proposed DCC are short signal paths between the
inputs and the output of the circuit, containing only two or three current mirrors
(CM). A short signal path is very important to minimize the influence of the
mismatch effect. This effect in particular CMs modifies the gain of the CM. In
case of equal transistors in the CM the gain should equal 1, but the mismatch
effect can modify it even by 1-10 %, depending on transistor sizes.

3 Verification of the proposed circuit

The proposed DCC has been tested be means of transistor simulations and on
the basis of the software model to compare the results and evaluate the obtained
precision. The DCC has been tested for an example case of three inputs x
and three corresponding weights w that varied in the range of 100 nA – 6 µA.
Waveforms of particular signals have been carefully selected in such a way to
present the behavior of the circuit in different situations. Figs. 3 and 4 present
selected results for large (1–6 µA) and small (100–600 nA) x and w signals,
respectively. In the time period of 0 – 10 µs particular x signals and their
corresponding weights w differ by very small values – for selected x – w pairs
even only by 0.5%. The resultant DCC output current is very small, which is
representative for the situation in which the weights of a given neuron are located
very close to a given pattern X. Even for such small differences the comparators
operate properly, but for such signals they exhibit the slowest performance. The
calculation time was equal to 100 ns and 500 ns for large and small signals,
respectively. Such situation, which can be viewed as the worst case scenario,
appears rather seldom during the overall learning process.
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Fig. 3: Verification of the DCC at the transistor level for large currents in the
range of 1–6 µA: (a, b, c) Input (Ix), weight (Iw) tnd the comparator output
signals, (d) Theoretical (Iout t) and real (Iout r) DCC output current and the
power dissipation, (e) Error: Iout t − Iout r in reference to maximum range of
Iout. The DCC output current is normalized – divided by the number of inputs.

Fig. 4: Results for small signals (in the range of 10–100 nA).

In the period of time from 10 to 18 µs the signals differ more visibly that is
more common situation, as typically neurons are more distant from particular
vectors X. The waveforms of the signals in-between 0 and 18 µs have multiple-
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level step-like shapes. Such shapes are representative for the way, in which input
data as well as neuron weights are provided to DCC i.e., as steady signals.

In the period from 18 to 30 µs, x and w are relatively fast changing signals.
Such signals allow to observe dynamic parameters of the circuit e.g. introduced
delays. Figs. 3 and 4 (e) present a difference between the ideal (theoretical) out-
put signal (proportional to the L1 distance) and the real output signal provided
by the DCC. In the period starting from 18 µs the error fluctuates in the range
up to 10% (20 % for small signals), which is due to the delay introduced by the
DCC. For “slower” signals the error is much smaller. The most reliable values of
the error are those obtained in-between 10 and 18µs, always after finishing the
transient state for particular data samples. In these cases, the obtained values
are below 0.4% and 1.3% for large and small signals, respectively. This is a good
result, taking additionally into account the fact that this error is systematic and
almost equal for all neurons. It is also worth mentioning that accurate values of
the distances are of secondary importance in detection process of the winner.

Figs. 3 and 4 (d) present also the power dissipation. In the second case
the circuit dissipates less power but at the same time it requires larger time
to calculate the value of the L1 distance. As a result the energy consumed
during calculation of a single distance is smaller for larger signals (around 5 pJ).
Additionally, for larger signals the circuit produces more precise results.

4 Conclusions

In this paper we have presented a new, low power, high precision, distance cal-
culation circuit for analog self-organizing Neural Networks. The circuit operates
asynchronously and fully in parallel. It features a simple structure, resulting in
low chip area. This makes the circuit suitable for the application in miniaturized
portable devices e.g. in WBAN systems.
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[1] B. Latré, B. Braem, I. Moerman, C. Blondia, “A survey on wireless body area networks”,
Wireless Networks, vol. 17 (1), 2011, pp. 1-18

[2] S. Osowski, Linh T.H., “ECG beat recognition using fuzzy hybrid neural network”,, IEEE
Transactions on Biomedical Engineering, vol. 48 (11), 2001, pp. 1265-1271

[3] A. Gacek, “Preprocessing and analysis of ECG signals – A self-organizing maps approach”,
Expert Systems with Applications, Vol. 38 (7), 2011, pp. 9008-9013

[4] G. Valenza, A. Lanata, M. Ferro, E.P. Scilingo, “Real-time discrimination of multiple
cardiac arrhythmias for wearable systems based on neural networks”,Computers in Car-
diology, vol. 35, 2008, pp. 1053-1056

[5] O. Inan, L. Giovangrandi, G. Kovacs, “Robust neural-network-based classification of
premature ventricular contractions using wavelet transform and timing interval fea-
tures”,IEEE Trans. Biomed. Eng., vol. 53, no. 12, pp. 2006, pp. 2507–2515

[6] S. Khucharoensin, V. Kasemsuwan, “A High Performance CMOS Current-Mode Preci-
sion Full-Wave Rectifier (PFWR)”, International Symposium on Circuits and Systems,
(ISCAS), Vol.1, May 2003, pp. I-41–I-44

[7] B. Boonchu, W. Surakampontom, “A CMOS current-mode squarer/rectifier circuit”, In-
ternational Symposium on Circuits and Systems, Vol.1, May 2003, pp. I-405–I-408

620

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.




