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Abstract. In this paper we describe an approach to integrate structural
expert knowledge about class relations into classi�cation schemes under
the assumption of unary class coding. Exemplary, we show in a medical
application such an integration for incorporation of prior medical knowl-
edge about uncertainty for distinguishing patient classes. This knowlegde
is integrated here in a class dissimilarity measure used for training the
classi�cation model.

1 Introduction

Automatic classi�cation using machine learning tools is a widely accepted
methodology. A large variety of classi�cation problems were successfully solved
in di�erent application areas ranging from economics, engineering and physics to
biology and medicine, to name just a few. Frequently, standard machine learn-
ing tools are/can be applied without any or minimum speci�c knowledge about
the structure of the considered problem. This can be seen as one of the key
advantages of these tools: their suitability for many di�erent kinds of problems.
However, for speci�c tasks it might be necessary to integrate problem dependent,
structural expert knowledge to end up with a model, particularly optimized and
speci�ed for a certain classi�cation task. Examples for those speci�cations could
be feature selection, the utilization of more adequate non-standard metrics re-
�ecting particular data properties or integration of uncertainty in data by in-
terval arithmetic of fuzzy approaches. In medicine and psychology, frequently
patients are diagnosed by medical doctors based on clinical expert knowledge,
which is later not explicitly contained in the labeled data. This knowledge could
be additional information about the investigated diseases, the patients, etc., de-
pending on the expert level. Yet, after the medical diagnosis is done, these
uncertainties or apriori known disease relations are frequently dropped.

Many machine learning models for classi�cation tasks like multi-layer per-
ceptrons, counter-propagation networks or fuzzy classi�cation schemes assume
an unary coding of the class information of the data such that deviations and
accuracy information of the desired model output can be expressed as a numer-
ical value. Both problems have in common that apriori known class relations
or uncertainties in labeling (diagnosis) would in�uence the classi�cation deci-
sion. Therefore, such information should be used for the classi�er training. In
this paper, we propose the explicit incorporation of such expert knowledge into
machine learning classi�cation systems. In particular, we suggest to code these
information into a class similarity/dissimilarity measure, which then is used in a
classi�cation model to judge class label agreements. Exemplary we demonstrate
this for a semi-supervised vector quantization model - the Fuzzy Supervised
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Neural Gas when applying it for classi�cation of patients su�ering from a cop-
per metabolism disease based on neurophysiological measurements.

2 The Standard Fuzzy Supervised Neural Gas

As a model for fuzzy classi�cation problems using structural expert knowledge,
we extend the Fuzzy Supervised Neural Gas (FSNG,[13]) to deal with this infor-
mation. The FSNG is a semi-supervised extension of the unsupervised standard
neural gas vector quantizer (NG,[8]). It assumes data points v ∈ V ⊂ Rn with
the data density P (v), prototypes wj ∈ Rn, j = 1 . . . N and a di�erentiable
dissimilarity measure d (v,wj) in the data space. Further, each data vector v

is accompanied by a data assignment vectors cv ∈ [0, 1]
NC with vector entries

taken as class probability or possibility assignments. Thus, it can be seen as a
variant of unary class coding of the NC classes. Analogously, we assign to each
prototypes wj a class label vector yj . The apriori class structure information
as well as expert knowledge about the classes is re�ected by a prede�ned class
dissimilarity measure δ (cv,yj). The cost function

EFSNG =
1

K (σ)

∑
j

ˆ
P (v)hσ

(
kγj (v,wj , Dε)

)
Dε (v, cv,wj ,yj , γ) dv (1)

with a di�erentiable measure δ (cv,yj) between the label vectors, has to be
minimized in FSNG. It is structurally similar to that of NG but with a new
dissimilarity measure

Dε (v, cv,wj ,yj , γ) = (γ · δ (cv,yj) + εδ) · ((1− γ) · d (v,wj) + εd)− εδεd (2)

combining the data and the class dissimilarity in a multiplicative manner. The
mixing parameter γ ∈ [0, 1] determines the in�uence of the class information with
γ = 0 yielding the standard NG. The additional parameter vector ε = (εδ, εd)
prevents zero learning in case of perfect match between the prototype wj and
data point v but di�ering class labels yj and cv and vice versa [13]. Further,

hσ
(
kγj (v,wj , Dε)

)
= exp

(
−
kγj (v,wj , Dε)

2σ2

)
(3)

is the neighborhood function of prototypes depending on the dissimilarity dif-
ferences by the rank function

kγj (v,wj , Dε) =
N∑
i=1

Θ (Dε (v, cv,wj ,yj , γ)−Dε (v, cv,wi,yi, γ)) (4)

where the Heaviside function Θ (x) equals one if x ≤ 0 and is zero elsewhere.
In the FSNG model, both the prototypes as well as their class label vectors
are adapted according to a stochastic gradient descent learning. Thereby, the
prototype learning is in�uenced by the class agreement δ (cv,yj):

4wj = − (1− γ) (γ · δ (cv,yj) + εδ) · hσ
(
kγj (v,wj)

)
· ∂d (v,wj)

∂wj
(5)
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and the label adaptation

4yj = −γ · ((1− γ) · d (v,wj) + εd) · hσ
(
kγj (v,wj)

)
· ∂δ (cv,yj)

∂yj
(6)

also takes the data dissimilarity d (v,wj) into account. According to the mixing
parameter γ a semi-supervised learning scheme is obtained. In the recall phase,
when data class label are not available, the data mapping is realized only on the
base of the data dissimilarities d (v,wj): An input vector v is mapped onto a
prototype s by the winner-take-all mapping rule

s = argminj (d (v,wj)) (7)

and thereafter, as response, the class label associated to that data point simply
is the class label vector ys of the winning prototype. Due to the lack of space,
we refer to [13] for further details.

3 Integration of Expert Knowledge

We now show, how structural expert knowledge can be intergated into the FSNG
model. So far, we did not speci�ed the data and class dissimilarities d (v,wj)
and δ (cv,yj). Simplest, the Euclidean distance could be applied for both in
FSNG. However, in dependence of the shape and structure of the data more
adequate dissimilarity measures can be chosen such as the weighted Euclidean
distance, divergences or di�erentiable kernels to name just a few [3, 10, 11, 12].
In this way, prior expert knowledge can be easily fed into the model. If the data
dissimilarity measure is parametrized and di�erentiable, then its adaptation can
be realized again as stochastic gradient descent as it is known from relevance
learning [3], for example.

Obviously, the class dissimilarity measure can also be subject of expert
knowledge integration. For example, in breast cancer staging mainly �ve stages
of increasing impairment are distinguished (except the healthy stage - without
symptoms) : pre-cancerous or non-invasive (level 0), invasive with di�erent sizes,
and di�erent state of spreading to axillary lymph nodes (levels 1�3) and invasive
breast cancer that has spread beyond the breast and nearby lymph nodes to
other organs of the body (level 4) [1]. However, di�erentiation between these
stages is sometimes di�cult and needs a lot of medical experience. Further, it
might be for some treatments necessary to di�erentiate between certain stages
whereas the distinction between other stages can be neglected for those treat-
ments. Hence, training a classi�er system for such tasks should take this expert
knowledge into account.

We suggest to modify the class dissimilarities δ (cv,yj) for a respective knowl-
edge integration. One simple choice is to take this dissimilarity as a positive
de�nite bi-linear form

δK (cv,yj) = (cv − yj)
T
K (cv − yj) (8)

with the a positive de�nite expert knowledge matrix K. For example, K−1

could be the matrix of anti-/correlations such that the dissimilarity (8) becomes
the Mahalanobis distance. Another possibility of knowledge integration is a class
weighting related to their importance according to a weighted Euclidean distance

δβ (cv,yj) =

NC∑
k=1

βk
(
[cv]k − [yj ]k

)2
(9)
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with weights βk > 0. In the later application we also consider another type of
knowledge integration: As mentioned above, the labels of training data samples
may su�er from an uncertainty in the expert labeling. We consider the condi-
tional probability p (l|k) that a data vector assigned to class k could belong to
class l. In the following we denote such a case as failure event (fe). We collect

this information in an uncertainty matrix U ∈ [0, 1]
NC×NC with Uk,l = p (l|k)

such that
∑
l Uk,l = 1. Further, we suppose that the diagonal elements are max-

imum, i.e. Uk,k > Uk,l ∀l 6= k. Under this assumption and having non-vanishing
o�-diagonal elements, a failure event should be less contribute to an error crite-
rion compared to the case that U is diagonal. For this purpose, we introduce
the uni�cation dissimilarity for data and prototype label vectors cv and yj

Dk,l =

(
[cv]k + [cv]l

2
−

[yj ]k + [yj ]l
2

)2

(10)

with respect to the classes k and l. All values Dk,l form the uni�cation dissimi-
larity matrix D. There, the measure Dk,l describes the deviation of class vector
entries if the classes k and l would be merged, i.e. we take these as a uni�cation.

Both aspects, uncertainty and uni�cation distance are combined in the class
dissimilarity measure

δU (cv,yj) = Fr (U ◦D) (11)

where U ◦D is the Hadamard product and Fr (·) denotes the Frobenius norm.
Obviously, δU (cv,yj) is not a metric but still a dissimilarity measure [9].

We emphasize at this point that the uncertainty matrix does not explicitly
code the classi�cation goal rather than structural information and expert knowl-
edge about classi�cation failures. Of course, other choices of combinations are
possible as well as other structures of expert knowledge.

4 Application

We demonstrate the integration of expert knowledge for a classi�cation problem
in the �eld of neurology. In particular, we consider a data set of M = 122
data vectors describing seven neurophysiological parameters in the brain from
patients su�ering from Morbus Wilson and volunteers [2, 6]. Yet, the volunteers
sometimes show neurophysiological impairment symptoms but with lower degree
and complexity, which may be symptoms of other diseases. Morbus Wilson is
a copper metabolism disease which leads to an accumulation of copper in the
brain causing motoric disturbances as well as neurophysiological impairments.
According to a clinical scheme suggested by Konovalov, patients can be divided
into two main groups: neurological (N) and non-neurological (NN) manifestation
[4]. These groups are further di�erentiated. The neurological group contains
the subgroups of pseudo-sclerotic (PS), pseudo-parkinsonian (PP) and merged
type (MT). The non-neurological group includes the hepatic type (HT) and
the asymptomatic type (AT) [5]. Yet, a clinical (expert) distinction between
these subgroups is di�cult and requires a strong medical experience. During the
course of the disease the non-neurological becomes manifest in the neurological
state. Medical treatment may slow this process down and reduces the symptoms.
Depending on the impairment level and the respective pharmaceutic dose rate
the treatment causes side e�ects and could also be expensive. Therefore, a
precise classi�cation is demanded. Di�erent physical examinations are usually
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PS PP MT HT AT V PS PP MT HT AT V

F
S
N
G

PS 16 8 6 2 2 0

F
S
N
G

w
it
h
β

17 2 12 0 2 1

PA 0 10 1 0 2 1 0 11 1 0 1 1

MT 2 1 4 0 0 1 0 1 6 0 0 1

HT 0 6 0 1 0 3 0 6 0 1 0 3

AT 0 0 0 0 4 4 0 0 0 0 4 4

V 0 15 1 0 10 22 0 14 1 0 8 25

F
S
N
G

w
it
h

U

PS 16 4 11 1 2 0

U

0.60 0.15 0.25 0 0 0

PP 0 1 1 5 2 5 0.10 0.60 0.30 0 0 0

MT 0 0 6 1 0 1 0.25 0.25 0.50 0 0 0

HT 1 0 0 4 0 5 0 0 0 0.80 0.15 0.05

AT 0 0 0 0 4 4 0 0 0 0.15 0.60 0.25

V 0 0 1 1 10 36 0 0 0 0 0.05 0.95

Table 1: Results of the FSNG using di�erent levels of expert knowledge: confusion matrices

for the standard FSNG (top - left), FSNG with class weighting (top right) and expert knowledge
intergartion (down - left) and the uncertainty matrix U .

applied including genetic analysis, �ne-motoric and neurophysiological tests, and
other. The results are condensed in the expert diagnosis by the medical doctor.

The task here is, to classify the patients according to the Konovalov-scheme
only on the basis of their neurophysiological data v ∈ R7 [4]. Earlier investiga-
tions have shown that a neurophysiological persistent manifestation takes place
[6]. However, it is not clear whether a precise classi�cation based on these data
is possible. Thereby, it is of great importance to di�erentiate at least between
the main types (N, NN) and volunteers. The training data are labeled according
to the Konovalov-scheme and then unary coded by class label vectors cv with
the class sequence (PS,PP,MT,HT,AT,V). Thus the �rst three entries describe
the neurological class followed by the two non-neurological subtypes and the
volunteer class.

The structural medical expert knowledge is available (as common sense) for
failure events in clinical classi�cation of patients. It is fed into the uncertainty
matrix U in this way that the non-diagonal elements in each row (diagnosis)
of U describe the probability for detecting the respective diagnosis (column)
instead. The resulting matrix is displayed in Tab. 4. The class dissimilar-
ity is determined according to (11). Otherwise, if less information should be
used at least a weighting of the single subtypes is possible: In that case main
weight should be given to detect the volunteer group to prevent an unnecessary
treatment. According to medical expertise, we used the class weighting vector

β = (2, 2, 2, 1, 1, 10)
T
with class dissimilarity measure (9).

The classi�cation results are generated using the FSNG algorithm to deal
also with fuzzy decisions taking N = 11 prototypes and identical initialization
for all experiments. The resulting confusion matrices are depicted in Tab. 4 in
comparison to the results for the standard Euclidean distance as class dissimilar-
ity, which does not include any expert knowledge. We observe for the standard
case many misclassi�cations for volunteers. Further, violations of the mapping
to the neurological and the non-neurological occur. Integration of expert knowl-
edge reduces these e�ects. When weighting of the classes is applied, a small
improvement is achieved. However, the remaining violations are remarkable. In-
tegration of stronger expert knowledge about the uncertainty of medical doctors
classi�cation leads to a substantial improvement. In particular, the volunteer
group is clearly separated from the neurological class. A remaining violation
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is due to the asymptomatic subtype. This e�ect is in agreement with clinical
�ndings, because the AT-group usually show very weak symptoms. Additionally,
the separation between the neurological and the non-neurological types is also
improved. Yet, the confusions within these groups are not solved re�ecting the
structural expert knowledge. In conclusion we can state that a classi�cation of
Wilson's disease types based on neurophysiological measurements is possible if
structural expert knowledge is used for the task speci�c classi�cation scheme.
Without this expert information a precise classi�cation is di�cult at least.

5 Concluding Remarks

In this paper we propose the integration of structural expert knowledge into
classi�cation schemes which make use from class dissimilarity measures. For
those systems the expert information can be plugged into this class dissimilarity.
We show in an exemplary application of classi�cation of Wilson's disease based
on neurophysiological data, how structural knowledge improves the classi�cation
results. As classi�cation scheme we used the fuzzy supervised neural gas model,
which easily allows such an integration. However, on the basis of this idea
we recommend the integration of expert knowledge also for other classi�cation
schemes like fuzzy supervised SOM [7] and tasks, if available.

References

[1] S. Edge, D. Byrd, C. Compton, A. Fritz, F. Greene, and A. Trotti, editors. AJCC cancer
staging manual. Springer, 2010.

[2] P. Günther, T. Villmann, and W. Hermann. Event related potentials and cognitive eval-
uation in Wilson's disease with and without neurological manifestation. Journal of Neu-
rological Sciences [Turkish], 28(1):79�85, 2011.

[3] B. Hammer and T. Villmann. Generalized relevance learning vector quantization. Neural
Networks, 15(8-9):1059�1068, 2002.

[4] W. Hermann, P. Günther, A. Wagner, and T. Villmann. Klassi�kation des Morbus Wilson
auf der Basis neurophysiologischer Parameter. Der Nervenarzt, 76:733�739, 2005.

[5] W. Hermann, T. Villmann, F. Grahmann, H. Kühn, and A. Wagner. Investigation of �ne
motoric disturbances in Wilson's disease. Neurological Sciences, 23(6):279�285, 2003.

[6] W. Hermann, T. Villmann, and A. Wagner. Elektrophysiologisches Schädigungspro�l von
Patienten mit einem Morbus Wilson'. Der Nervenarzt, 74(10):881�887, 2003.

[7] M. Kästner and T. Villmann. Fuzzy supervised neural gas for semi-supervised vector quan-
tization � theoretical aspects. Machine Learning Reports, 5(MLR-02-2011):1�16, 2011.
ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/˜fschleif/mlr/mlr_02_2011.pdf.

[8] T. M. Martinetz, S. G. Berkovich, and K. J. Schulten. 'Neural-gas' network for vec-
tor quantization and its application to time-series prediction. IEEE Trans. on Neural
Networks, 4(4):558�569, 1993.

[9] E. Pekalska and R. Duin. The Dissimilarity Representation for Pattern Recognition:
Foundations and Applications. World Scienti�c, 2006.

[10] F.-M. Schleif, T. Villmann, B. Hammer, and P. Schneider. E�cient kernelized prototype
based classi�cation. International Journal of Neural Systems, 21(6):443�457, 2011.

[11] P. Schneider, B. Hammer, and M. Biehl. Distance learning in discriminative vector quan-
tization. Neural Computation, 21:2942�2969, 2009.

[12] T. Villmann and S. Haase. Divergence based vector quantization. Neural Computation,
23(5):1343�1392, 2011.

[13] T. Villmann and M. Kästner. Fuzzy supervised neural gas with sparsity con-
straint. Machine Learning Reports, 5(MLR-05-2011):17�20, 2011. ISSN:1865-3960,
http://www.techfak.uni-bielefeld.de/˜fschleif/mlr/mlr_05_2011.pdf.

214

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.




