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Abstract. Most dynamic models of interest in machine learning, robotics,

AI or cognitive science are nonautonomous and input-driven. In the last

few years number of important innovations have occurred in mathemati-

cal research on nonautonomous systems. In understanding the long term

behavior of nonautonomous systems, the notion of an attractor is fun-

damental. With a time varying input, it turns out that for a notion of

an attractor to be useful, the attractor cannot a single subset, but must

be conceived as a sequence of sets varying with time as well. The aim of

this tutorial is to illuminate useful notions of attractors of nonautonomous

systems, and also introduce some newly emerging concepts of dynamical

systems theory which are particularly relevant for input driven systems.

1 Introduction

Natural systems are subject to time-dependent variations, be it the rhythm of
day and night or the yearly seasons or weather patterns that vary from one
year to another. At a less macroscopical level, most systems in this world are
subject to external forces often varying with time even more irregularly than
the weather patterns. Modeling the influence of such time-dependent exter-
nal forces/influences leads to a mathematical theory of what are called nonau-

tonomous dynamical systems1. An autonomous system is a dynamical system
which has no external input and always evolves according to the same unchang-
ing law, whereas nonautonomous systems are subject to time-varying input or
exhibit a temporal change of their update equations. The mathematical theory
of nonautonomous systems is considerably more involved than the theory of au-
tonomous systems, and has only recently begun to develop energetically. Since
most systems which are of interest in machine learning, robotics, AI, cognitive
science are input-driven, it is about time to spread the news about the novel
mathematical developments in these fields. In fact, without solid theoretical
foundations underpinning input driven dynamical systems we can never hope to
obtain deep understanding of the wide variety of dynamical models routinely
used in machine learning, robotics, AI, or cognitive science. Moreover, without

∗The research leading to this paper was funded by the FP7 European project ORGANIC,
organic.elis.ugent.be/organic.

1Note that this usage of autonomous/nonautonomous is entirely unrelated to the notion of
autonomy as understood in robotics and the agent sciences.
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deep understanding of the workings of the existing models the development of
the new ones will not be anchored in a principled framework and will continue
to be mostly heuristic based.

Of course, this short tutorial paper cannot aspire to a complete overview
of current theoretical developments. Instead, we restrict ourselves to a short
introduction to one of the fundamental objects in nonautonomous systems (as
fundamental as in the familiar autonomous systems), namely, attractors. At-
tractive sets play prominent role in shaping information latching and transition
in input driven dynamical systems. We will also briefly illustrate the difficulty
in extending the theory of autonomous dynamical systems to non-autonomous
ones by showing how trivial attractor structures in fixed-input regimes can lead
to complex state space organizations in the non-autonomous case.

The need for stable dynamical entities like attractors have been desired in
both cognitive modeling and artificial (recurrent) neural networks. In cognitive
modeling, the notion of an attractor or attractor-like phenomena is based on
a scientific metaphor for the brain as a dynamical system capable of hosting
large number of stable states which manifest under certain inputs. The studies
and usage of artificial recurrent neural networks also point to the existence of
stable dynamical phenomenon. References where authors consider such dynam-
ically stable phenomenon in various alternative forms are many. For instance,
almost-stable phenomena or a number of alternative “attractor-like” metasta-
bility phenomena have been considered that may arise in high-dimensional non-
linear dynamics: saddle point dynamics [17]; attractor relics (or attractor ru-
ins) where classical attractors in a fast-timescale subsystem are destroyed by a
slow-timescale saturation dynamics [5]; unstable attractors, a mathematically
surprising kind of classical attractors, which however arise generically in certain
spiking neural networks and can be left under the impact of arbitrarily small
noise because they are surrounded arbitrarily closely by basins of other attrac-
tors [20]; high-dimensional attractors (initially named partial attractors) which
govern only some dimensions of a high-dimensional phase space [11]; attractor
landscapes shaped by control parameter (input) dynamics which lead to the
appearance and disappearance of attractors due to incessant bifurcations [14];
coordinated patterns as a basis for pattern generation in motor control [6]; pe-
riodic attractors as a basis for a memory and music and rhythm generation [8];
attractors as a basis for a stable working memory [15].

Researchers have used a cautious terminology such as “attractor-like phe-
nomena”, when they were aware that traditional dynamical systems theory only
provided for attractors in autonomous systems. Often, however, the term “at-
tractor” has been used in an intuitive sense only, without a rigorous meaning.

Much of the literature on nonautonomous dynamical systems focuses on dy-
namics on unbounded state spaces. Typically, conditions under which a single,
global attractor arises are investigated. This is of limited use in AI, machine
learning or robotics, where typically the dynamic models have bounded (even
compact) state space and modelers are usually interested in the multitude of lo-
cal attractors that arise in such systems. The limited literature on the analysis
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(e.g., [19]) of smaller attractors of bounded systems is inaccessible to a nonexpert
and moreover addresses totally invertible systems which again is not a feature
of most input driven systems that arise e.g. in neural and cognitive modeling.
In this paper we introduce the reader to new notions of attractors which are
pertinent for brain-like systems in that they are local phenomena in bounded
systems.

We start by providing some background concepts. In this paper, our broad
interest will be on discrete-time systems (which automatically arise per dis-
cretization in simulations on digital computers). A discrete-time autonomous

system on a state space X is given by a map g : X → X, where the dynam-
ics is generated by self-compositions (iterations) of g with itself. Any sequence
{· · · , x−1, x0, x1, · · · } obtained by xn = g(xn−1) for all n ≥ 1 is understood
to be the evolution of the system. The discrete-time analog of nonautonomous

systems on a state space X is a family of maps {gn}, where each gn : X → X is
a continuous map, and the state of the system at a time instant n, xn satisfies
xn = gn−1(xn−1).

In this tutorial we are concerned with a particular class of nonautonomous
discrete-time dynamical systems called input-driven systems. An input-driven

system (IDS) on a space X comprises a continuous map g : U ×X → X and a
sequence {un} which is the input or a driving sequence, where each un ∈ U , so
that the state xn of the system at a time instant n satisfies xn = g(un−1, xn−1).
An IDS is a discrete-time nonautonomous system in the above sense if we define
gn(·) := g(un, ·) 2.

We remark that much of the theory of nonautonomous systems has been in-
fluenced strongly by developments in its subarea “random dynamical systems”
(see [1] for a comprehensive introduction). A discrete-time random dynamical

system can be regarded as an IDS where the input un is drawn from a stochastic
stationary source. The more general theory of nonautonomous systems is com-
prehensibly described in a recent book by Kloeden and Ramsmussen [10]. Our
presentation in this paper differs from the existing literature in the sense that
we do not assume the maps gn to be surjective. In the next section we show that
identifying a single subset as an attractor for nonautonomous systems may be
inappropriate, and introduce the notion of an attractor for input driven systems.

2 Nonautonomous sets as candidates of attractors

Given any metric space (X, d), and any nonempty subset A, we denote Bη(A) :=
{y ∈ X : d(x,A) < η} as the η-neighborhood of A. Here d(x,A) denotes the
distance of a point x to a set A, which is the smallest point-to-point distance3

of x to any point a ∈ A. The n-fold composition of a map g : X → X with itself
is denoted by gn.

The notion of an attractor in autonomous system is simple and direct, whereas
different attractor notions in nonautonomous systems have to be employed to

2If the input un is a fixed constant for all n, then such an IDS is an autonomous system.
3or infimum of point-to-point distances
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satisfactorily explain the asymptotic behavior even in simple systems. We illus-
trate this with an example. We begin by recalling a well-established definition
of an attractor for an autonomous system in discrete time.

Definition 2.1 Let g : X → X be a continuous map. A subset A ⊆ X is an
attractor of a map g : X → X if A is a nonempty, closed set such that: (i) A
is invariant, i.e., g(A) = A; (ii) For any ǫ > 0 there exists a δ > 0 such that,
x ∈ Bδ(A) =⇒ gn(x) ∈ Bǫ(A) ∀ n ≥ 0; (iii) There exists an ǫ > 0 such that if
x ∈ Bǫ(A), then limn→∞ d(gn(x), A) = 0.

Let us consider the example where g(x) = x2 on X = [0, 1]. It can be verified
that the set {0} and the whole space [0, 1] are attractors. In verifying that [0, 1]
is an attractor, note that that Bǫ([0, 1]) = {x : d(x, [0, 1]) < ǫ} = [0, 1]. In
general, for a surjective map on a compact space, the whole space is always an
attractor. However, we observe in the above example, in the case of [0, 1] as an
attractor, for every initial condition x ∈ (0, 1) the evolution {x, g(x), g2(x), · · · }
converges to {0} which is an attractor too, and a proper subset of [0, 1]. This
behavior where the system states in an attractor converge to another attractor
subset within it is considered somewhat trivial and uninteresting in dynamical
systems theory. We often find that the ‘interesting’ dynamics takes place in
those attractors which do not have any of its proper subsets as attractors. Such
attractors are called minimal attractors.

We now turn our attention to nonautonomous systems. We illustrate that
defining a single subset as an attractor would be inadequate for nonautonomous
systems and then discuss the prospect of defining an attractor for a nonau-
tonomous system to be a sequence of sets.

Consider the simple example of an IDS g : {−1, 1}× [0, 1] → [0, 1] defined by

g(u, x) :=

{

x2 : if u = −1,
1− x2 : if u = 1.

(1)

For any sequence {un}, which contains both −1 and 1, we have a nonau-
tonomous system. Consider the particular case where un = (−1)n and the
nonautonomous system generated by it, i.e.,

gn(x) :=

{

x2 : if n is odd,
1− x2 : if n is even.

(2)

The dynamics of this system can be described as follows. Consider the bi-
infinite sequence {· · · , 0, 0, 1, 1, 0, 0, 1, 1, · · · }, where the segments 0, 0 and 1, 1

alternatively repeat, and 0, 0 is placed in the 2nth and 2(n + 1)th position.

Let An denote the nth element of this bi-infinite sequence. It may be verified
that {An} is a state evolution of (2). Furthermore, consider another bi-infinite
sequence {Bn}, Bn = An+1. It may be verified that {Bn} too is a state evolution
of (2). With some effort, given any state evolution {xn} of (2), one can verify
that exactly one of the following holds: (i) d(xn, An) → 0 as |n| → ∞. (ii)
d(xn, Bn) → 0 as |n| → ∞. In such a scenario it would be inappropriate to call
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a solitary set, say for instance {0, 1}, an attractor, because such an attractor
would then take away the time-information describing which states are getting
attracted at which instants. However, since any state evolution approaches one
of these two sequences {An} and {Bn} it is appropriate to conceive them as two
different attractors. Of course, the mathematical definition of an attractor is not
yet made, but this simple example illustrates the difficulty or inappropriateness
in defining an attractor of (2) as a solitary set. This becomes more apparent
if we consider inputs {un} in (1) that are not periodic, but of a more general
nature. In such cases, an attractor {An} would also be essentially non-periodic.

In general, as the reader may expect, the attractors are not necessarily se-
quences of singletons, but sequences of sets, where the position of a set in such a
sequence determines the time-index. Such a sequence of sets is called a nonau-

tonomous set.

3 Attractors for input driven systems

For simple IDS such as (1) it is not difficult to intuitively understand the notion
of an attractor. However, mathematically defining it requires more technicalities
than defining an attractor of an autonomous system. Moreover, we will observe
that since attractors are nonautonomous sets themselves, different attractor no-
tions which give information on the past and future attractive properties of the
nonautonomous systems would be needed. We provide these definitions with
examples, and also state some results. The proofs can be found in the indicated
references.

In writing down prospective cases of attractors of an IDS in (1), we observed
that the states of the IDS approached a time-varying attractor that was a se-
quence of sets as time decreased or increased. In other words, one sequence of
sets was approaching another sequence of sets as the time index of the sequences
increased or decreased. In order to describe this “approaching” between se-
quences of sets mathematically, we need the notion of Hausdorff semi-distance.

For nonempty sets A,B ⊂ X the Hausdorff semi-distance from A to B is
dist(A,B) := sup{d(x,B) : x ∈ A}. Equivalently, dist(A,B) := inf{ǫ : A ⊂
Bǫ(B)}. Whenever A ⊂ B, dist(A,B) = 0 (or more strongly, A ⊂ B =
Closure(B) ⇔ dist(A,B) = 0). The term “semi-distance” is due to the fact
that, in general, dist(A,B) 6= dist(B,A). The notion of “approaching” of two
sequences of sets {An}, {Bn} in some space X can be then captured by stating
that limn→∞dist(An, Bn) = 0.

A nonautonomous dynamical system, and hence an IDS can be formulated
as what is called a “process”. Such formulation helps simplifying the notation
when defining attractors.

Definition 3.1 Let Z2
≥ := {(n,m) : n,m ∈ Z, n ≥ m}. A process φ on a state

space X is a mapping φ : Z2
≥ ×X → X which satisfies the evolution properties:

(i). φ(m,m, x) = x for all m ∈ Z and x ∈ X,
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(ii). φ(n,m, x) = φ(n, k, φ(k,m, x)) for all m, k, n ∈ Z with m ≤ k ≤ n and
x ∈ X,

(iii). for given n,m, the map φ(n,m, ·) is continuous on X.

A nonautonomous system {gn} on X generates a process φ on X by setting:
φ(m,m, x) := x, φ(n,m, x) := gn−1 ◦ · · · ◦ gm(x). Conversely, for every process
φ on X, there exists a nonautonomous system {gn} defined by: gn(x) := φ(n+
1, n, x). Hence, φ(n,m, x) represents the state of the nonautonomous system at
a time instant n, having evolved from time m, when the system was in state x.
We will use the terminology of a “process” while referring to a “nonautonomous
system” whenever convenient. To define attractors, we need to define invariant
sets and orbits or solutions which converge to them. These are recalled in the
following definition, where the notation φ(n,m,A) is understood to be the set
⋃

x∈A

φ(n,m, x).

Definition 3.2 Let φ be a process on a space X. An entire solution of a process
φ is a sequence ϑ = {ϑn}n∈Z such that ϑm ∈ X for all m and φ(n,m, ϑm) = ϑn

for allm ≤ n; a nonautonomous set A = {An : An ⊂ X} is said to be φ-invariant
if Am ⊂ X for all m and φ(n,m,Am) = An for all n ≥ m; a nonautonomous
set A = {An : An ⊂ X} is said to be φ positively invariant or φ +invariant if
φ(n,m,Am) ⊂ An for all n ≥ m.

Clearly, an entire solution is a φ-invariant set, and a φ-invariant set is a
φ +invariant set. A special type of a φ-invariant set exists which contains all
the essential dynamics of any nonautonomous system. We call this special φ-
invariant set a “natural association” (see [13] for details).

Definition 3.3 Let φ be a process on a compact space X. The sequence {Xn}
defined by

Xn =
⋂

m<n

φ(n,m,X).

is called the natural association of φ on X.

We now provide the idea behind this definition. In the example (2), each
map in the nonautonomous system is surjective. However, this is generally not
the case. A simple where surjectivity fails is a recurrent neural network with a
standard sigmoid mapping. Thus if a function gn : X → X is not surjective,
it can occur that for any given time-instant, the states of all possible entire
solutions at that particular time instant is contained in only a proper subset of
X (shown as a gray patch in Figure 1). It is possible to show the existence of
a unique sequence {Xn}, where each Xn is a nonempty closed subset of X such
that (i) gn(Xn) = Xn+1; (ii) every entire solution {ϑn} is such that ϑn ∈ Xn;
(iii) for every x ∈ Xk, there is an entire solution {ϑn} such that x = ϑk.
Such a sequence {Xn} turns out to be the natural association of φ as stated in
Proposition 3.1.
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Fig. 1: X is shown as a solid block. All entire solutions pass only through
the gray patches, the gray patches being the components Xn of the natural
association; the dark patches are components of a local attractor {An} and
An ⊂ Xn. An attracts only solutions in a neighborhood intersecting Xn but
may not attract points outside Xn.

Proposition 3.1 ([13]) Given a process φ on a compact space X, let {Xn} be

its natural association. Then the following statements hold: (i) For all n ≥ m,

φ(n,m,Xm) = Xn. (ii) A nonautonomous set A = {Ak} is φ-invariant if and
only if for every pair k ∈ Z, x ∈ Ak there exists an entire solution {ϑn} such that

ϑk = x and ϑk ∈ Ak for all k ∈ Z- (iii) A φ-invariant set {Yn} is the natural

association of φ, i.e., Yn = Xn for all n, if and only every entire solution {ϑn}
is such that ϑk ∈ Yk for all k ∈ Z.

In the simple case where all the maps gn are surjective onX, every component
Xn in the natural association is X itself. However, when the the maps are
not surjective, the natural association definition is useful and substantial as it
contains all the essential dynamics. We incorporate this entity in the definition
of attractors.

Given a process φ and natural association {Xn}, we adopt the following
notation: for every A ⊂ Xi, we denote

B(i)
η (A) := Bη(A) ∩ Xi := {x ∈ Xi : d(x,A) < η}.

Definition 3.4 Let φ be a process on a space X, with the natural association
{Xn}, and let A = {An} be a φ +invariant set such that each An is compact
and ⊂ Xn. If for some η > 0, any of the following conditions

lim
j→∞

dist(φ(n, n− j, B(n−j)
η (An−j)), An) = 0 for all n,

lim
j→∞

dist(φ(n+ j, n,B(n)
η (An)), An+j) = 0 for all n,

∃N > 0 lim
j→∞

dist(φ(n+ j, n,B(n)
η (An)), An+j) = 0 for all n > N,

holds, then in that order of compliance, A is respectively called a local +invariant-

pullback-attractor, local +invariant-forward-attractor and eventual local +invariant-

forward-attractor. If in addition A is φ-invariant then they are also local φ
invariant attractors or just local attractors of the corresponding types.
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The term “local” is made to signify that a η in the above definition can be
arbitrarily small indicating a localized attractive property of any such attrac-
tor. For instance, consider the definition of a local +invariant-pullback-attractor
made above. The role of the natural association for such an attractor is evident
from the B

(∗)
η neighborhood, and the definition merely requires that An attracts

entire solutions only in a neighborhood intersecting Xn and not (necessarily)
anything more (see Figure 1).

At the moment, only the definitions of local φ-invariant forward and local
pullback attractors, and not the more general case of φ + invariant type of
attractors, are available in the literature. However, the attractivity principle
behind both φ-invariant and φ +invariant attractors are the same except for the
difference in their invariance.

We now briefly explain the definitions of φ-invariant local pullback and local
forward attractors before indicating the need for the φ +invariant attractors.

Pullback attractor. The idea of pullback attraction was introduced in the
mid 1990s in the context of random dynamical systems and was subsequently
applied to more general nonautonomous systems. To obtain pullback conver-
gence one would have to start progressively earlier at n− j with j → ∞ in order
to end up getting arbitrarily closer to An. See Figure 2 for a visualization of
pullback action. In Figure 2, for instance, the black batch which belongs to

B
(n−1000)
η (An−1000) gets more closely packed near An than the gray patch in

B
(n−100)
η (An−100) to An at time n.
Forward attractor. In comparison to pullback attractors, forward attrac-

tors are intuitively closer to our usual preconceptions about attraction. The
principle behind forward convergence is that if one is already sufficiently close
to some An (regardless of the past) then asymptotically, one gets closer to the
components of the forward attractors in the future.

We first consider the nonautonomous system (2). It may be verified that
the two sets {An} and {Bn} defined in Section 3 are both pullback and forward
attractors. The components of the attractors in this example are all singletons.
We next give an example where pullback and forward attractors differ from each
other. Consider the IDS g : {−1, 1} × [0, 1] defined by g(u, x) =

√
x if u = −1,

g(u, x) = x2 if u = 1, with an input sequence {un} such that un = −1 for
n < 0 and un = +1 for n ≥ 0. Clearly for any entire solution that does not
intersect {0, 1}, the entire solution approaches {0} as n → −∞ and approaches
{1} as n → ∞. This aspect is reflected by the local pullback and local forward
attractors. It may be verified that {An}, where An = {0} for all n is a local
pullback attractor while {An}, where An = {1} is a local forward attractor. In
the above example, a pullback attractor gives information on the attractivity for
the past, while a forward attractor gives information on the attractivity for the
future.

In general, there may or may not exist a local forward attractor at all. Con-
sider the nonautonomous system g(u, x) : [− 3

2 .
3
2 ] × [−1, 1] → [−1, 1] given by

g(u, x) = ux/(1 + |x|) and un being a sequence increasing monotonically such
that limn→∞ un = 3

2 and limn→−∞ un = − 3
2 . For this system all entire solu-
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Fig. 2: Pullback action of {An}: An’s are blocks (with a 45 degree hatching); the

different shaded or hatched region around them is the B
(∗)
η neighborhood. The

arrowed broken lines from the different shaded or hatched regions are meant to
indicate where these regions are mapped to at time n (getting mapped to disjoint
sets at time n is for the sake of illustration only). Pullback action is visualized

by observing entire solutions passing through the B
(n−j)
η neighborhood of An−j

get closer to An at the time instant n as j increases.

tions which do not intersect {0} converge to 1
2 or to − 1

2 . But there is no entire
solution passing through these points 1

2 or to − 1
2 and hence they do not belong

to any forward attractor. For past attractivity, it may be verified that {An},
where An = {0} for all n is a pullback attractor .

In general for an IDS g(u, x), with each input un belonging to a finite set U ,
there always exists a local forward and local pullback attractor which faithfully
reflects the past and future attractivity of every entire solution [13]. The situ-
ation when U is infinite is different. There always exists a pullback attractor
which reflects the past attractivity of an entire solution but there may not exist
any forward attractor which reflects the future attractivity of an entire solution
[10]. In such cases the more general φ +invariant attractors of the types in
Definition 3.4 exist in some cases, and even more general attractors such as
the eventual local +invariant-forward-attractors as in (iii) of Definition 3.4 are
needed to explain satisfactorily the future behavior of an entire solution [13].

We close the section by noting that it may happen that there exists two
distinct attractors {An} and {Bn} of the same type where Aj intersects Bk

for some j 6= k. This tells us that for a solution to get attracted to a given
attractor, it has to be at the right place at the right time in the state space.
In the special class of recurrent neural networks called Echo State Networks
[7], such an issue does not arise. For such systems, for every given input along
with its corresponding IDS, there is an unique attractor which happens to be
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the natural association itself. In general, for lack of additional concepts and
machinery we are still unable to identify all the attractors of an IDS.

4 Complexity of state evolution in input driven systems

We conclude the paper by mentioning some interesting observations related to
complexity of state evolution in a popular class of nonautonomous dynamical
models used in the machine learning community, namely reservoir models, e.g.
[7, 12, 21]. Such models are often constructed so that the maps gn are contrac-
tions for all n. In that case, the autonomous dynamics of each individual gn
is extremely simple, governed by a unique attractive fixed point. However, the
state evolution when the model is driven by an input stream over U can appear
quite “complex”. To quantify the complexity of such state trajectories one may
borrow tools from the theory of complex autonomous dynamical systems. In
particular, the geometrical complexity of state evolution can be characterized
by different kinds of fractal dimensions (e.g. [4]).

On the other hand, if U is finite (and hence can be considered a finite alphabet
over which the input streams are formed), a natural notion of complexity of
input streams is provided by the topological entropy of the information source
emitting the streams. Briefly, topological entropy of an information source is the
exponential rate of increase of the number of allowed (e.g. non-zero probability)
distinct subsequences of length ℓ ≥ 1 (ℓ-blocks) one can observe in the input
streams, as ℓ increases. Obviously, rigid input structures, such periodic streams,
have zero topological entropy.

Interestingly enough, one can show that in such models, the complexity of
state evolution directly reflects the complexity of the input driving source. In
particular, the upper box counting and Haussdorf fractal dimensions of the state
evolution form upper and lower bounds, respectively, of the scaled topological
entropy of the input source [22]. A more involved multifractal analysis of the
state evolution in such input driven systems under a class of stochastic input
sources with memory can be found in [22].

These results only underline the main message of this contribution: The usual
notions of theory of autonomous dynamical systems are not adequate to capture
the richness of the non-autonomous systems. Yet, while such systems are widely
used in AI, machine learning or robotics, with new models being continually
introduced, a unifying theory of input driven nonautonomous systems has yet
to be fully developed. In our previous example, one may ask: Where does
the perceived complexity of the state evolution come from? Is it due to the
complex nature of the input driving source, or due to the complex autonomous
dynamics of the individual maps gn, or both? Theory of autonomous systems,
while profound and deep in many respects, is not suitable for answering such
questions.

Another interesting issue is the notion of computation at “the edge of chaos”
[2]. When extending numerical calculation of Lyapunov exponents (as signatures
of chaos) from autonomous systems to input-driven systems (e.g. [23]), it is
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observed that often enhanced computational power of nonautonomous systems
corresponds to regimes with such ‘pseudo’ Lyapunov exponents close to 0. While
the term “edge-of-chaos” can be misleading, since there is no well defined notion
of ‘chaos’ for input driven systems, it nevertheless is an interesting observation
and a theory of exactly in what sense and why the edge of stability is important
for input driven systems would be a welcome contribution to the research activity
in this field.

5 Conclusions

Most dynamic models of interest in machine learning, robotics, AI, cognitive
science are nonautonomous and input-driven. The fact that a nonautonomous
system depends on the absolute starting time as well as the the time that has
elapsed since starting has many deep consequences. Many concepts and results
from the autonomous case are no longer valid, or are relevant only for special
cases of nonautonomous systems and exclude many interesting types of behavior.
One such example is that an attractor in the autonomous case is a single subset,
but that would fail to define an attractor in the nonautonomous case. Other
developments of nonautonomous dynamical systems such as in linearization the-
ory [16], stability theory [3], bifurcation theory [16] and random dynamics [1]
establish a young and active field of research.
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