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Abstract. The Structural Risk Minimization principle allows estimating
the generalization ability of a learned hypothesis by measuring the com-
plexity of the entire hypothesis class. Two of the most recent and effective
complexity measures are the Rademacher Complexity and the Maximal
Discrepancy, which have been applied to the derivation of generalization
bounds for kernel classifiers. In this work, we extend their application to
the regression framework.

1 Introduction

The Rademacher Complexity (RC) and the Maximal Discrepancy (MD) are
two well-known data-dependent measures of complexity that have been deeply
investigated in the last years [1, 2, 3, 4]. These measures have been exploited
for deriving powerful statistical bounds on the performance of a learned model,
as they provide sharper alternatives to both data–independent [5] and margin–
based bounds [2]. For this reason, a lot of work has been spent in order to
design new algorithms for effectively computing and exploiting these quantities
in binary classification problems [6, 7]. In this paper, we propose the application
of MD and RC to the regression framework [8, 9]: in particular, we derive a kernel
algorithm, taking inspiration from the well–known Support Vector Regression
(SVR) learning machine [10] and present some preliminary result on a simple
artificial problem.

2 Complexity and Structural Risk Minimization

Let us consider the usual regression framework, consisting of an input set X ⊆ R
d

and an output set Y ⊆ R, which are related by a fixed but unknown probability
distribution μ on X × Y. A series of IID samples (x1, y1), . . . , (xn, yn), where
xi ∈ X and yi ∈ Y, is originated from μ and our goal is to find a regression
function h : X → R, chosen in a fixed class H, along with a reliable estimate
of its performance. For this purpose, a loss function � (h(x), y) : R × Y → R is
defined, which measures the quality of the regressor. Typical loss functions in
the regression framework are the Mean Square Error (MSE), the Mean Absolute
Error (MAE) or more sophisticated ones like the Huber’s loss. Unfortunately,
all the mentioned losses are unbounded, and this represents an issue for several
statistical approaches, including both MD and RC [1, 2]. In particular, it is
well–known that additional constraints on μ (e.g. on its high–order moments)
must be introduced in this case, otherwise the convergence of the regressor to
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the optimal one is not guaranteed [5, 11]. However, in practical cases, the data
domain (X ,Y) is always finite, so we can consider, without loss of generality,
bounded losses of the type � (h(x), y) : R × Y → [0, 1].

Given a user–defined loss, the generalization error of a regression function
h is defined as L(h) = Eμ� (h(x), y), which cannot be computed since μ is un-
known. Exploiting its empirical estimate L̂n(h) = 1

n

∑n
i=1 �(h(xi), yi) obviously

brings to a severe over–fitting, therefore the Structural Risk Minimization (SRM)
approach [2, 5, 1] suggests to study the uniform deviation suph∈H[L(h)−L̂n(h)].

Let us define a complexity measure of the hypothesis space H:

Ĉσ(H) = Eσ sup
h∈H

2L̂σ
n = −Eσ inf

h∈H
−2L̂σ

n (1)

where L̂σ
n = 1

n

∑n
i=1 σi�(h(xi), yi) and σ is a vector of independent uniform

{−1,+1}–valued random variables. The term defined in Eq. (1) is known as the
Rademacher Complexity of the class H, while, if the combinations of the random
variables are such that

∑n
i=1 σi = 0, the Maximal Discrepancy is obtained,

instead.
Given that the complexity measure is valid for any function h ∈ H, it is

possible to prove the following bound for L(h) [3, 6], which holds with probability
(1 − δ):

L(h) ≤ L̂n(h) + Ĉσ(H) + 3

√
log 2

δ

2n
, ∀h ∈ H. (2)

Eq. (2) can be used as a performance index in the SRM framework [5],
by choosing a possibly infinite sequence {Hi, i = 1, 2, . . .} of model classes of
increasing complexity, H1 ⊆ H2 ⊆ . . ., and then selecting the class H∗, and the
function h∗ in it, according to the best trade–off between the complexity Ĉσ(H)
and the empirical error L̂n(h). Unfortunately, the term Ĉσ(H) is difficult to
compute in practice and, only in some recent works [6, 7] effective methods have
been proposed, targeting Support Vector classifiers. In the following Section we
extend them to Support Vector Regression.

3 RC and MD for Support Vector Regression

Let us define h(x) = w · φ(x) + b as a linear regressor in φ(x), where φ(x) :
R

d → R
D is introduced as it will allow us to apply the well–known kernel trick

[10], w ∈ R
D and b ∈ R. Let our class of functions consist in all the regressors

for which ‖w‖2 ≤ A and b ∈ R or, in other words, regressors with margin larger
than 1

A [5]. As the epsilon insensitive loss function of SVR [10] �ε(h(x), y) =
|h(x) − y|ε, where |·|ε = max (0, |·| − ε), is unbounded, we introduce a bounded
epsilon insensitive loss function �εu

εl
(h(x), y) = |h(x) − y|εu

εl
(Figure 1), where

|·|εu

εl
= min (max (0, |·| − εl) , εu) /εu, so that �εu

εl
(h(x), y) ∈ [0, 1]. In order to

identify h∗ and H∗, we have to both solve infh∈H L̂σ
n, and find the minimum of

the empirical error. Note however, that the empirical error is already included
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Fig. 1: The bounded epsilon insensitive loss function �εu
εl

(h(x), y).

in the computation, because L̂n(h) = L̂σ
n when σi = −1, ∀i. Then our problem

can be reformulated as:

inf
w,b

−
n∑

i=1

σi�
εu
εl

(h(xi), yi), s.t. ‖w‖2 ≤ A, (3)

which is a non–convex problem, based on Ivanov regularization. The correspond-
ing Tikhonov regularization formulation becomes

inf
w,b

1
2
‖w‖2 + C

n∑
i=1

(−σi)�εu
εl

(h(xi), yi), (4)

which is, in general, simpler to solve, though still non–convex. On the other
hand, it is well–known that the two formulations are equivalent for some value
of C, as shown, for example, in [12]1. A solution to (4) can be found iteratively,
by exploiting the ConCave–Convex Procedure (CCCP) [13, 14]. Though the
global solution cannot be found, in general, because the problem is non–convex,
the CCCP allows to reach a, usually good, local minimum in a finite number
of steps [13]. In order to apply the CCCP, the concave and convex terms in
(4) must be identified, therefore we define S+ as the set of indexes for which
−σi = +1 and S− as the set of indexes for which −σi = −1. Then, problem (4)
can be reformulated as follows:

min
θ

ξ, ξ̂

ξ′, ξ̂′

Jconvex(θ)︷ ︸︸ ︷
1

2
‖w‖2 + C

⎛
⎜⎜⎝ ∑

i∈S+

Jconvex(θ)︷ ︸︸ ︷(
ξi + ξ̂i

) Jconcave(θ)︷ ︸︸ ︷
−

(
ξ′i + ξ̂′i

)
+

∑
i∈S−

Jconcave(θ)︷ ︸︸ ︷(
ξ′i + ξ̂′i

) Jconvex(θ)︷ ︸︸ ︷
−

(
ξi + ξ̂i

)⎞
⎟⎟⎠

S+ :

⎧⎪⎪⎨
⎪⎪⎩

yi − hi ≤ εl + ξi ξi ≥ 0

hi − yi ≤ εl + ξ̂i ξ̂i ≥ 0
yi − hi ≤ εl + εu + ξ′i ξ′i ≥ 0

hi − yi ≤ εl + εu + ξ̂′i ξ̂′i ≥ 0

S− :

⎧⎪⎪⎨
⎪⎪⎩

yi − hi ≥ εl + ξi ξi ≤ εu

hi − yi ≥ εl + ξ̂i ξ̂i ≤ εu

yi − hi ≥ εl + ξ′i ξ′i ≤ 0

hi − yi ≥ εl + ξ̂′i ξ̂′i ≤ 0

(5)

where, for simplifying the notation, θ = [w, b] and hi = h(xi) = w · φ(xi) + b.
Then, we can apply the CCCP, as sketched in Algorithm 1.

1It is worth noting that the properties of interest, presented in [12], do not necessitate the
convexity hypothesis.
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At the t-th optimization step, the CCCP requires that the derivative of the
concave part of the cost function is computed. Let h

(t)
i = w(t) · φ(xi) + b(t) be

the regressor, computed exploiting the solution identified at the t-th step. Then,
we define:

S+

⎧⎪⎪⎨
⎪⎪⎩

Δi

{
+C If δ

(t)
i ≥ εl + εu

0 Otherwise

Δ̂i

{
−C If δ

(t)
i ≤ −εl − εu

0 Otherwise

S−

⎧⎪⎪⎨
⎪⎪⎩

Δi

{
−C If δ

(t)
i ≤ εl

0 Otherwise

Δ̂i

{
+C If δ

(t)
i ≥ −εl

0 Otherwise
(6)

where δ
(t)
i = yi − h

(t)
i . Therefore, the derivative of the concave part is:

dJconcave(θ)
dθ

∣∣∣∣
θ(t)

θ =
∑

i∈S+

(
Δ(t)

i + Δ̂(t)
i

)
hi +

∑
i∈S−

(
Δ(t)

i + Δ̂(t)
i

)
hi (7)

and the problem (5) at step t becomes:

{w(t+1), b(t+1)} : arg min
w,b,ξ,ξ̂

1
2
‖w‖2 + C

∑
i∈S+

(
ξi + ξ̂i

)
− C

∑
i∈S−

(
ξi + ξ̂i

)
+

+
∑

i∈S+

(
Δ(t)

i + Δ̂(t)
i

) (
wT φ(xi) + b

)
+

+
∑

i∈S−

(
Δ(t)

i + Δ̂(t)
i

) (
wT φ(xi) + b

)
(8)

S+ :
{

yi −
(
wT φ(xi) + b

) ≤ εl + ξi ξi ≥ 0(
wT φ(xi) + b

) − yi ≤ εl + ξ̂i ξ̂i ≥ 0

S− :
{

yi −
(
wT φ(xi) + b

) ≥ εl + ξi ξi ≤ εu(
wT φ(xi) + b

) − yi ≥ εl + ξ̂i ξ̂i ≤ εu

By introducing 2n Lagrange multipliers α, α̂ ∈ R
n and defining Q ∈ R

n×n =
{qi,j} = K(xi,xj) = φ(xi) · φ(xj), where K(·, ·) is the kernel function, we can

Algorithm 1 The CCCP procedure.

Initialize θ0

repeat
θ(t+1) = arg minθ Jconvex(θ) +

(
dJconcave(θ)

dθ

∣∣∣
θ(t)

)
θ

until θ(t+1) = θ(t)
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derive the dual formulation of problem (8) at the t-th step:

min
α,α̂

1
2

[
α
α̂

]T [
Q Q
Q Q

] [
α
α̂

]
+

∑
i∈S+

αi [−yi + εl] + α̂i [−yi − εl] +

+
∑

i∈S−
αi [−yi + εl + εu] + α̂i [−yi − εl − εu] (9)

n∑
i=1

αi +
n∑

i=1

α̂i = 0

S+ :

{
−Δ(t)

i ≤ αi ≤ C − Δ(t)
i

−C − Δ̂(t)
i ≤ α̂i ≤ −Δ̂(t)

i

S− :

{
−C − Δ(t)

i ≤ αi ≤ −Δ(t)
i

−Δ̂(t)
i ≤ α̂i ≤ C − Δ̂(t)

i

which can be solved with well-known Quadratic Programming solvers like, for
example, SMO [9]. Once a solution has been found, the regressor is defined as
h(x) =

∑n
i=1(αi + α̂i)K(xi,x) + b.

4 A simple example

We consider a simple regression problem, proposed in [14], where the function
g(x) = sinc(3x) is uniformly sampled in x ∈ [−1,+1] using 100 samples. An ad-
ditive Gaussian noise N (0, 0.05) is applied to all samples, while a larger Gaussian
noise N (0, 1) is applied only to the 30% of the samples. For our experiments, we
exploit a Gaussian kernel K(xi,xj) = exp

[
−γ ‖xi − xj‖2

]
, therefore the size of

H is controlled by two hyperparameters: A and γ. In particular, we look for the
optimal pair (A∗, γ∗), according to the SRM principle, by exploring the intervals
γ ∈ [10−3, 102] and A ∈ [10−3, 102], which include the cases of interest, among 10
values, equally spaced in a logarithmic scale. We set εl = 0, as in �1–regression,
and εu = 1, which allows to span the entire error range for the sinc(·) function.
In Fig. 2 the results, obtained using the RC, computed through a Monte Carlo
procedure with 100 trials, are shown: similar values can be obtained with MD
but are not presented here due to space constraints. Fig. 2a compares the trends
of the Mean Absolute Percentage Error (MAPE) of h∗(x) against g(x) and of
the error, predicted with the RC–based bound, when we set γ = γ∗ and we let
A vary. It is worth noting that the minimum of the MAPE and of the predicted
error coincide though, as usually happens with SRM bounds, the estimation is
loose. This is confirmed also by Fig. 2b, which clearly shows the accuracy of
the selected approximating function h∗(x).

5 Conclusions

We have presented the application of the Rademacher Complexity and the Max-
imal Discrepancy to a bounded version of the Support Vector Regression. From
the preliminary results on a simple artificial problem, it appears that these com-
plexity measures can effectively identify the optimal regressor. More experiments
are underway to compare this approach to the classical methods for measuring
the goodness of fit of a statistical model, such as the one surveyed in [15].
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Fig. 2: Results obtained using the Rademacher Complexity approach.
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