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Abstract. The K-fold Cross Validation (KCV) technique is one of the
most used approaches by practitioners for model selection and error es-
timation of classifiers. The KCV consists in splitting a dataset into k
subsets; then, iteratively, some of them are used to learn the model, while
the others are exploited to assess its performance. However, in spite of
the KCV success, only practical rule-of-thumb methods exist to choose
the number and the cardinality of the subsets. We propose here an ap-
proach, which allows to tune the number of the subsets of the KCV in a
data–dependent way, so to obtain a reliable, tight and rigorous estimation
of the probability of misclassification of the chosen model.

1 Introduction

The Support Vector Machine (SVM) [1] represents one of the state-of-the-art
techniques in the framework of classification problems. The training (TR)
phase consists in finding a set of parameters by solving a Convex Constrained
Quadratic Programming (CCQP) problem, for which several effective techniques
have been proposed throughout the years. However, the search of optimal pa-
rameters does not complete the learning phase of the SVM. In fact, a set of
additional variables, namely the hyperparameters, needs to be tuned in order to
select the best model, whose performance must be then assessed to guarantee
the reliability of the results. The former step is known as the Model Selection
(MS ) phase, while the latter one is known as the Error Estimation (EE ) phase.

Several techniques can be exploited for MS and EE in Support Vector Ma-
chines [2, 3]. A practical approach consists in using the K-fold Cross–Validation
technique (KCV) [3, 4, 5], which allows both to tune the hyperparameters and
to estimate the generalization error of the classifier. The available dataset is
split into k folds, where, in turn, (k − 2) subsets are used for the TR phase and
the remaining two are exploited for MS and EE purposes, respectively. Usually,
the value of k is aprioristically chosen and fixed: however, the choice of k can
severely influence both the performance of the selected model and the quality of
the predicted error [6, 7]. Rule-of-thumb methods suggest to fix large values of k
(5, 10 or 20), since it is usually preferable to exploit a larger number of patterns
for training purposes, even at the expense of obtaining loose generalization error
estimations [6].

However, in many fields, obtaining a tight and rigorous estimation of the
generalization error of a classifier is not only an issue of academic interest, but
also a way to guarantee, in a statistical sense, the reliability of the model. In
these cases, smaller values of k should be preferred in order to reserve a larger
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fraction of samples for EE purposes. In many applications like, for example,
legal practice [8], it is necessary to automatically find a trade–off between the
percentage of data used to train the classifier, and the tightness of the estimated
error. In this paper, we propose a modified, but statistically rigorous, KCV
approach, which allows to implement this trade-off by considering k as an addi-
tional hyperparameter and tuning it during the MS phase, in a data–dependent
way.

2 The Support Vector Machine: TR, MS and EE phases

Let us consider a binary classification problem, where Dn = {(xi, yi)}, i =
1, . . . , n is a dataset composed by n i.i.d. pairs, such that xi ∈ X ∈ R

d and
yi ∈ Y ∈ {±1}. The relation between X and Y is encapsulated in an unknown
distribution P (X ,Y), which originated the data. The goal of learning is to find
a function f : R

d → Yf ⊆ R, which approximates this relation. The SVM
algorithm [1] can be exploited for this purpose, where the classifier is identified
during the TR phase by solving the following CCQP problem [1]:

min
α

1
2

n∑
i=1

n∑
j=1

αiαjyiyjK (xi,xj) −
n∑

i=1

αi (1)

0 ≤ αi ≤ C,

n∑
i=1

yiαi = 0,

where C is one of the hyperparameters and K (xi,xj) is a kernel function. In this

work we will focus on Gaussian kernels K (xi,xj) = exp
(
−γ ‖xi − xj‖2

)
, where

γ is an additional hyperparameter, but our results can be easily generalized to
other kernel functions. After solving the CCQP problem, the output of the
classifier can be computed as f(x) =

∑n
i=1 yiαiK (xi,x)+b, where b is the bias.

The hyperparameter pair (C, γ) must be tuned during the MS phase. Though
some rule-of-thumb methods have been suggested for deriving the hyperparam-
eters in a very simple and efficient way (e.g. [9]), the most used and effective
procedure is a grid search, where the CCQP problem is solved for several hyper-
parameter values and the models are compared by assessing their performance
on previously unseen data. For this purpose, a usual approach consists in re-
serving a validation set Vm, consisting in m patterns originated from the same
P (X ,Y) but independent of the ones of Dn. For every value of (C, γ), problem
(1) is solved and the empirical error on Vm is computed:

L̂m(f) � 1
m

m∑
i=1

�H(f(xi), yi), �H(f(x), y) � 1 − sign [f(x)] y
2

, (2)

where �H is the loss function, which counts the number of misclassifications.
Once the MS phase concluded, the EE step consists in estimating the gen-

eralization error L(f). Obviously, using L̂m(f) as an estimation of L(f) is not
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statistically correct and can lead to remarkable underestimations of the gen-
eralization error. Therefore, a further error estimation set Es, composed of s
patterns and independent of both Dn (already used for training the model) and
Vm (already exploited for selecting the hyperparameters), should be used for
this purpose. As �H is a random variable which can assume only two different
values and is distributed according to a Binomial distribution, we can exploit the
Clopper-Pearson (CP) inequality [10] to upper–bound L(f), which is statistically
sound and provides the tightest error estimation [11]:

L(f) ≤ LEE � max
p

⎧⎨
⎩p :

sL̂s(f)∑
j=0

(
s

j

)
ps(1 − p)s−j ≥ δ

⎫⎬
⎭ , (3)

where L̂s(f) is the empirical error rate of f on Es.

3 Complete K-fold Cross Validation

As three independent sets for TR, MS and EE could not be available in practical
cases, the K-fold Cross Validation (KCV) procedure is often exploited [3, 4, 12,
5], which consists in splitting Dn in k subsets, where k is fixed in advance:
(k − 2) folds are used, in turn, for the TR phase, one for the MS phase and one
for the EE step. In particular, we define DnT R

the TR set of nTR = n − 2(n/k)
data, DnMS

the MS set of nMS = n/k samples, and DnEE
the EE set of nEE =

n/k patterns. We also define L̂nMS
(f) and L̂nEE

(f) as the empirical errors,
respectively, on the MS and the EE set. Unfortunately, a single splitting is often
not sufficient to obtain reliable models and the corresponding error estimations,
as reported in the recent literature: in particular, it can be shown that the
variance of the error obtained by using the k folds, both during the MS and the
EE phases, can be large in some cases [13]. As an alternative, we propose to use
the Complete KCV (C-KCV) procedure [12], which consists in considering all the
possible combinations of subsets in which the original dataset can be split, given
a fixed number of folds k. The number of combinations is lC =

(
n/k
n

)(
n/k

n−(n/k)

)
;

however, in practice, a Monte Carlo procedure can be exploited and lMC << lC
combinations are actually used. It is worth noting that the C-KCV method
is trivially parallelizable, so that novel high–performance multi–core computing
architectures can be exploited to speed–up the procedure.

As remarked above, in general, k is aprioristically chosen: typical values
are 5, 10 and 20, which allow to reserve a large fraction of data for the TR
phase at the expense of obtaining a looser generalization error estimation, since
few data can be used for EE purposes. We propose, instead, to consider the
number of folds as a hyperparameter, which can assume any value in the set
k ∈ {3, . . . , n}, so to automatically weigh up the number of patterns used to
create the model and the percentage of Dn, which is exploited to estimate the
classifier performance on previously unseen data. Therefore, in our case, where
a Gaussian kernel is used, we have to tune the triple (C, γ, k).
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The algorithm for implementing the C-KCV procedure, where k is tuned
accordingly to a set of data, is detailed in Algorithm 1. For every value of the
hyperparameters triple, the available set is randomly split lMC times into the
three subsets, whose cardinalities depend on k. Then, at every step of the Monte
Carlo procedure, a classifier fTR is trained on DnT R

and the empirical error on
DnMS

is computed. As the validation sets are characterized, for different values
of k, by different cardinalities, in order to fairly compare the models during the
MS phase, we apply the CP bound for MS purposes as well, obtaining the index
of performance LMS(fTR). Note that, during the MS phase, we do not minimize
the empirical error on the validation set: the exploitation of the CP bound allows,
instead, to prevent overfitting. Subsequently, in order to exploit the largest set
of data which allows to guarantee, at the same time, the statistical rigorousness
of the approach, as also suggested in [4], we create a new set by joining DnT R

and DnMS
and retrain a classifier on it (f∗

MS). The obtained model is then used
for the EE phase, where the CP bound of Eq. (3) is exploited, and added to
a set of classifiers F . Once the MS phase ends, the best triple (C∗, γ∗, k∗) is
available as an output of the algorithm, as well as the best set of models F∗ and
the corresponding rigorous error estimation L(f) ≤ L∗

EE . Note that, every time
a new pattern must be classified, a model must be randomly chosen within F∗

in order to guarantee the statistical rigorousness of the error estimation bound.

Algorithm 1 Modified Complete KCV learning procedure
L∗

MS = +∞
for all C ∈ [0,+∞), γ ∈ [0,+∞), k ∈ {3, . . . , n} do

LMS = 0, LEE = 0, F = ∅

for i = 1 → lMC do
{DnT R

,DnMS
,DnEE

} = Random Split(Dn, k)
fTR = SV M(DnT R

, C, γ)
Compute L̂

(i)
nMS (fTR), L

(i)
MS = Clopper

(
L̂

(i)
nMS (fTR)

)
LMS = LMS + L

(i)
MS

f∗
MS = SV M(DnT R

∪ DnMS
, C, γ)

Compute L̂
(i)
nEE (f∗

MS), L
(i)
EE = Clopper

(
L̂

(i)
nEE (f∗

MS)
)

LEE = LEE + L
(i)
EE , F = F ∪ {f∗

MS}
end for
if LMS < L∗

MS then
L∗

MS = LMS , L∗
EE = LEE

lMC
, F∗ = F , {C∗, γ∗, k∗} = {C, γ, k}

end if
end for

4 Experimental Results and Future Work

We present in this section the results, obtained by applying our technique to the
datasets proposed by G. Rätsch for benchmarking Machine Learning algorithms
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Dataset [14] k∗ LEE L̂nt (F∗) Lk=5
EE L̂k=5

nt
(f∗

k=5) Lk=10
EE L̂k=10

nt
(f∗

k=10)

banana 3.9±0.5 15.9±1.0 11.0±0.4 17.3±1.4 11.1±0.3 21.8±2.0 11.4±0.5

breast cancer 3.4±0.5 36.3±1.0 26.1±1.9 39.3±1.1 27.0±3.3 46.5±3.1 26.8±3.7

diabetis 3.2±0.3 29.4±0.9 23.3±1.0 31.2±1.0 23.3±1.6 34.5±1.1 23.6±1.4

flare solar 3.7±0.9 38.5±0.6 33.0±1.4 39.6±1.0 33.1±1.4 42.9±0.8 32.9±1.3

german 3.9±0.8 30.1±1.1 23.5±1.0 30.5±0.9 24.1±1.2 34.6±1.4 24.0±1.9

heart 3.4±0.5 27.8±1.8 17.5±2.5 30.7±2.5 18.2±2.8 37.9±3.4 18.4±2.6

image 6.3±1.3 5.7±0.4 2.7±0.3 5.6±0.3 2.8±0.3 6.5±0.4 2.6±0.3

ringnorm 3.1±0.2 4.6±0.6 1.7±0.1 6.2±0.5 1.6±0.1 10.3±1.3 1.8±0.4

splice 5.7±0.9 16.2±0.6 11.5±0.5 16.2±0.9 11.7±0.5 17.6±0.9 11.6±0.5

thyroid 3.3±0.3 12.4±0.9 5.2±2.1 16.1±1.8 6.5±1.8 24.7±1.6 6.0±2.2

titanic 3.2±0.4 34.9±1.8 22.8±0.4 39.5±2.1 22.6±0.4 46.7±1.7 22.7±0.6

twonorm 3.2±0.3 6.3±0.7 2.7±0.1 7.3±0.7 2.7±0.1 10.7±0.8 2.6±0.2

waveform 4.0±0.7 16.2±1.3 10.4±0.5 17.0±2.0 10.6±0.7 21.1±2.0 10.4±0.2

Table 1: Results (in percentage) obtained with the modified C-KCV procedure.

[14]. All the datasets consists in 20 or 100 random splits1 of an original set of
samples into sets for learning (Dn) and for testing purposes (Tnt

, nt samples).
The first three columns of Table 1, report the values of k∗, the generalization
error L∗

EE , obtained during the learning phase, and the actual error L̂nt
(F∗)

performed on the test data Tnt
by the classifiers included in F∗. The subse-

quent columns show the comparison with the results obtained by applying the
conventional KCV approach, when k is fixed to the typical values 5 and 10. The
reported values represent both the estimated error Lk=5,10

EE and the misclassifi-
cation rate on the test set L̂k=5,10

nt
(f∗

k=5,10).
By analysing the experimental results, it is clear that the optimal values

of k mainly lie between 3 and 4. Note that this choice always guarantees the
tighter generalization error estimation value, at the expense of some occasional
and, eventually, slight increase of the misclassification rate on the test set. From
these experiments, we can also claim that k = 4 could represent a good choice,
if we had to select an a–priori value for the KCV procedure. However, it is
clear that the best value of k is highly data-dependent, thus justifying the use
of the proposed approach, even at the expense of considering k as a further
hyperparameter to tune, which affects the computational effort required by the
entire learning procedure.

It is also worth noting that the generalization error estimations, despite being
obtained with the tightest bound for Binomial distributions, are sometimes loose
if compared with the error rates, obtained on the test sets Tnt

: unfortunately,
this issue is not easy to circumvent, as CP represents the tightest available bound
in literature for binary classification problems when a hard loss function is used.
An open problem is hence to investigate the possibility of using different loss
functions and different bounds to reduce the looseness of the estimations.

1For computational reasons only the first 10 realizations are used in our experiments.
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5 Conclusions

We proposed a modified Complete K-fold Cross Validation approach, which al-
lows to automatically trade-off the percentage of data, used to train a classifier,
and the tightness of the estimated error, by considering the number of folds as a
hyperparameter to be tuned during the Model Selection phase. While k, in prac-
tice, is usually set to some fixed number, we have shown through some tests on
well-known benchmarking datasets that the proposed approach allows to obtain
tighter generalization error bounds, only at the expense of an occasional and,
eventually, slight increase of the misclassification rate on the test set. However,
further work has to be carried on, targeted towards tightening the discrepancy
between the predicted and the actual performance of a model.
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