
Parallelization of Deep Networks

Michele De Filippo De Grazia, Ivilin Stoianov, Marco Zorzi ∗

University of Padova - Dipartimento di Psicologia Generale
and Center for Cognitive Science - via Venezia, 8 Padova - Italy

Abstract. Learning multiple levels of feature detectors in Deep Be-
lief Networks is a promising approach both for neuro-cognitive modeling
and for practical applications, but it comes at the cost of high computa-
tional requirements. Here we propose a method for the parallelization of
unsupervised generative learning in deep networks based on distributing
training data among multiple computational nodes in a cluster. We show
that this approach significantly reduces the training time with very limited
cost on performance. We also show that a layerwise convergence stopping
criterion yields faster training.

1 Introduction

A recent breakthrough in machine learning is the development of stochastic hi-
erarchical generative models, implemented as neural networks with many hidden
layers that learn increasingly more complex distributed nonlinear representations
of the input data across layers without supervision [1]. These ”deep” networks
outperform other machine learning algorithms on benchmark pattern recogni-
tion problems [2] and are extremely appealing for the purpose of neuro-cognitive
modeling [3]. However, training of deep networks with millions of connections
on large datasets poses a serious computational challenge. Here we show that it
is possible to drastically reduce the training time by means of a parallel imple-
mentation on multi-core systems.

Deep Belief Networks (DBN) are neural networks composed of multiple layers
of latent stochastic variables. A DBN can be viewed as a stack of learning
modules, each of which is a Restricted Boltzmann Machine (RBM) [1]. A single
RBM is a stochastic neural network that consists of one layer of visible units
(encoding input data) and one layer of hidden units (feature detectors) connected
by bidirectional and symmetric links. A RBM is trained to generate the data
vector (i.e., maximizing the likelihood of recostructing the data) starting from
a given state of the feature detectors and using the weights wij in a top-down
direction. Contrastive-Divergence learning [2], given an input vector v+

i , first
actives the feature detectors h+

j (”positive” phase). Starting from stochastically
selected binary state of the feature detectors (using their state h+

j as a probability
to turn them on), it then infers an input vector v−i used in turn to reactivate
the feature detectors h−

i (”negative” phase). The weights wij are updated with
a small learning fraction ε of the difference between input-output correlations
measured in the positive phase and the negative phase:

Δwij = ε
(
v+

i h+
j − v−i h−

j

)

∗This work was supported by grant #210922 from the European Research Council to M.Z.

621

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

The RBM layers are trained in succession.

2 Parallel DBN

Here we propose a parallel implementation of DBN, based on non-proprietary
software, on a heterogeneous cluster of computing nodes (network of multi-core
boards) and examine its processing time and quality of learning.

Neural network training, inherently distributed, offers various levels of paral-
lelization. For example, parallelization at the layer level implies that the calcula-
tions specific to subsets of feature detectors are distributed among the available
processing nodes. In contrast, parallelization at the data level implies that the
calculations relative to the entire network, but specific to subsets of data (sin-
gle patterns or small batches of data) are distributed to the processing nodes
[4, 5]. Parallelization at the layer level in neural networks with iterative activa-
tion or training requires relatively frequent synchronization of layer activation,
which in a cluster of computers that communicate via network connections could
prolong the computations due to traffic delays. This level of parallelization is
more appropriate for specialized array processors, where data transfer time is
deterministic and almost negligible.

For computer clusters, it is more appropriate to employ methods that require
as little communication as possible. Training based on mini-batches allows such
a very limited communication. The training data is divided into k batches Dj=1:k

that are equally distributed among the k available nodes. Each computational
node j, on the basis of its data-set Dj, calculates in one training epoch an update
vector ΔWj of the common learner W . At the end of the epoch, when all nodes
are ready, a master-node gathers all update vectors, and updates the common
learner with the average of the single update-proposals: ΔW = 1/k

∑
j=1:k ΔWj .

2.1 Test platform: 40-nodes MPI-controlled computing cluster

Message passing is the most common parallel programming paradigm for com-
puter clusters. The key concept is exchange of messages between independent
calculators (CPUs, or nodes). The messages transport data and synchronize the
independent calculations. Message Passing Interface (MPI) specifies a language-
independent communications protocol used to program parallel computational
systems which execute independent processes that typically do not share com-
mon memory. MPI is the preferred technology due to high performance, scala-
bility, and portability.

The experiments were executed on a HP distributed computing cluster. The
cluster was composed of 5 nodes, each with two Quad-core processors and 32
GB of RAM. Overall, there were 40 cores. The nodes were interconnected with
Infiniband-technology network 1. The cluster was controlled by Linux (Mandrake
9.04 distribution), Octave 10.1, and Open-MPI library 2. Open-MPI routines

1http://www.infinibandta.org
2http://www.open-mpi.org

622

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

were executed from Octave through the MPITB toolbox3. [6] showed that this
toolbox outperforms all other MPI toolboxes for Octave/Matlab.

2.2 Implementation

We first adapted the original Matlab code of [2] for use in Octave, also generaliz-
ing it to arbitrary number of RBM-layers. In the parallel DBN implementation
we added collective MPI routines [5, 7] that distribute mini-batches of data,
execute training in parallel, gather proposed weight updates, and distribute an
updated learner.

Table 1 illustrates the flowchart of the parallelization algorithm. The algo-
rithm trains the overall DBN network sequentially, layer by layer, and every
RBM layer in parallel.

(1*) W0 = rand; i=0
k=number-of-processors

D = D1 ∪ D2 ∪ . . . ∪ Dk

(2) ↙ D1, W0 . . . ↓ Dj, W0 . . .↘ Dk, W0

(3) RBMi
1 . . . RBMi

j . . . RBMi
k

(4) ↘ ΔW i
1 . . . ↓ ΔW i

j . . .↙ ΔW i
k

(5*) ΔW i = 1
k

P
j=1:k ΔWi

j

W i+1 = W i + ΔW i

(6) ↙ W i+1 . . . ↓ W i+1 . . .↘ W i+1

(7) if not conv if not conv if not conv
GOTO(3). . . GOTO(3) . . .GOTO(3)

(8) ↘ outi
1 . . . ↓ outi

j . . .↙ outi
k

(9*) D =
S

h outi
h

if other layer GOTO(1)
else STOP

Table 1: Flowchart of the proposed Parallel DBN. Rows and columns indicate
sequential and parallel computations, respectively. Stars indicate operations at
the master-node level.

The parallel training of each layer starts with an initialization step executed
by a master node (step 1* of Table 1), which randomizes the learner’ weights
W 0 and randomly splits the training data D into k non overlapping subsets that
contain a similar number of training samples: D = D1∪D2∪. . .∪Dk (e.g.,[4, 5]).
The training data of the first layer is simply the input data, while the training
data of all other layers is the output of the immediately preceding layer. Then,
the master node distributes to all nodes j the corresponding data-sets Dj and
the weights of the learner (step 2).

At this point training starts in parallel on every node (step 3), each of which
independently trains the same RBM on its portion of the training data. At
completion of one learning iteration i, each RBMj has computed a candidate
weight update ΔW i

j . The master node collects then all weight updates (step

3http://atc.ugr.es/javier-bin/mpitb

623

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

4) in order to (step 5*) calculate a common update ΔW i equal to the mean of
the proposed updates [5, 8, 9, 10]. The common weight update ΔW i is used to
update the learner’s weights: W i+1 = W i + ΔW i

j , which are distributed back
to all nodes (step 6) for a subsequent RBM training epoch.

Training continues with step 3 unless a convergence criterion is satisfied or a
certain maximum number of epochs is reached, in which case the output of all
networks is used as input data for the successive layer (steps 8 and 9*).

3 Empirical validation: learning handwritten digits

Learning time and performance of the parallel DBN were assessed on a classic
handwritten digit recognition problem, similarly to [2]. We used the MNIST
database, which contains handwritten digits encoded as 28x28-pixel grey-level
images, size-normalized, mass-centered, and manually classified4. The data set
has about 60,000 training images and about 10,000 test images with mini-batch
size of 125 .

As in the original study [2], we used a network with three hidden layers
(500-500-2000 units, respectively, for a total of about 1.6 million connections)
and trained it with a biphasic procedure. RBM training was used in the first
phase for unsupervised learning of the generative model. In the second phase,
an output layer encoding the 10 digit classes was added on top of the deepest
hidden layer and the entire network was fine-tuned with error back-propagation
for discriminative learning. We examined the effect of parallelization on the
unsupervised learning only, because the fine-tuning phase is optional (see, e.g.,
[3]) and it is not tied to a specific supervised learning algorithms. In particular,
we trained the three hidden layers using 1, 2, 4, 8, 16, 20 and 40 computational
cores. To obtain a reliable measure of the effect of the number of cores, we trained
five networks for each number of cores. To obtain an objective measure of the
goodness of the representations obtained, fine-tuning was then run on a single
processor. We applied one of the two following stopping criteria: the first one
simply used a fixed number of epochs (n=50, as in [2]). The second method was
based on training convergence, in which learning was terminated when the mean
reconstruction error on all training patterns RE did not decrease by less than a
certain threshold value τRE for three consecutive iterations[5, 10], where τRE is
a small empirically derived constant. In the fine tuning phase, back-propagation
terminated when the RMS error (Root Mean Square Error) for all patterns did
not decrease by a threshold value τERMS for three consecutive iterations. The
RMS error is typically used in problems with a large number of patterns[11].

To evaluate the performance, we collected the following measures: recon-
struction error (measure of RBM learning), classification error (after fine-tuning),
number of epochs to convergence (in case of convergence-based stopping crite-
ria), and training time (for RBM only).

4MNIST: http://yann.lecun.com/exdb/mnist/index.html

624

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

3.1 Result and discussion

The results are shown in Figure 1 and Figure 2. Figure 1 shows the average
(across five replica of the network) classification error (bars) and total RBM
training time (line) as a function of the number of cores (ranging from 1 to
40), when the number of learning epochs was fixed (n=50). Figure 2(a) shows
the classification error and total RBM training time when learning was stopped
using a convergence criterion.

Fig. 1: Classification errors and RBM learning time as a function of number of
cores. Training executed with a fixed number of epochs

(a) (b)

Fig. 2: Classification errors and RBM learning time as a function of number
of cores using a convergence criterion for stopping. (a) total training time, (b)
training time by hidden layer

As expected, RBM learning time quickly decreased as the number of com-
putational cores increased (from 16500 sec for one core to 900 sec for 40 cores
and fixed number of pretraining epochs). The decrease was well fit by a power
function of core number (with a exponent of -0.86). At the same time, the clas-
sification error just slightly increased (from 1.14% for 1 core to 1.62% for 40
cores). RBM training based on a convergence stopping criterion yielded gen-

625

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

erally faster training times. Nonetheless, the number of cores still had a large
influence on training speed, with a 6-fold decrease in learning time (from 6700
sec for 1 core to 1100 sec for 40 cores). Moreover, effects on classification and
generalization were negligible (misclassification error of 1.25% for 1 core and
1.57% for 40 cores). This shows that the use of a convergence criterion based on
reconstruction error can optimize RBM training. Figure 2(b) shows the effect of
core number on the RBM training time for each hidden layer (the figure reports
again classification errors, for reference). Layer 3, connecting 500 input units
with 2000 feature units, required the greatest processing time due to its large
number of connections.

Learning time appeared to asymptote at 16 cores when using the convergence
criterion. This can be explained by the fact that the number of training epochs to
convergence is strongly influenced by mini-batch size. In a follow-up experiment
we observed that convergence speed decreased with increasing mini-batch size.
Note that the number of patterns processed before the weights update is the
product of core number and mini-batch size, thereby increasing when either
factors increase. Therefore, the value of this product has a significant impact on
scalability.

References

[1] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets.
Neural Comput., 18(7):1527–1554, 2006.

[2] G. E. Hinton and R. R. Salakhutdinov. Reducing the Dimensionality of Data with Neural
Networks. Science, 313(5786):504–507, 2006.

[3] I. Stoianov and M. Zorzi. Emergence of a ”Visual Number Sense” in Hierarchical Gener-
ative Model. Nature Neuroscience, 15:194–196, 2012.

[4] P. Färber and K. Asanovic. Parallel neural network training on multi-spert. In IEEE
3rd International Conference on Algorithms and Architectures for Parallel Processing,
Melbourne, Australia, December 1997.

[5] A. Margaris, S. Souravlas, E. Kotsialos, and M. Roumeliotis. Design and implementation
of parallel counterpropagation networks using MPI. Informatica, 18(1):79–102, 2007.

[6] J. Fernández, M. Anguita, E. Ros, and J. L. Bernier. SCE Toolboxes for the development
of high-level parallel applications. Lecture Notes in Computer Science, 3992:518–525,
2006.

[7] B. Ribeiro, R. F. Albrecht, A. Dobnikar, D. W. Pearson, and N. C. Steele. Parallel im-
plementations of feed-forward neural network using MPI and C# on .NET platform. In
Proceedings of the International Conference on Adaptive and Natural Computing Algo-
rithms, pages 534 – 537, Coibra, 2005.

[8] A. S. Ahmad, A. Zulianto, and E. Sanjaya. Design and implementation of parallel batch-
mode neural network on parallel virtual machine. In Industrial Electronic Seminar, 1999.

[9] S. Mahapatra, R. N. Mahapatra, and B. N. Chatterji. A parallel formulation of
back-propagation learning on distributed memory multiprocessors. Parallel Computing,
22(12):1661 – 1675, 1997.

[10] B. H. V. Topping, A. I. Khan, and A. Bahreininejad. Parallel training of neural networks
for finite element mesh decomposition. Computers & Structures, 63(4):693 – 707, 1997.
Computing in Civil and Structural Engineering.

[11] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, Inc.,
New York, NY, USA, 1995.

626

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

