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Abstract. The problem of adjusting the parameters of an event-based
network model is addressed here at the programmatic level. Considering
temporal processing, the goal is to adjust the network units weights so
that the outcoming events correspond to what is desired. The present
work proposes, in the deterministic and discrete case, a way to adapt
usual alignment metrics in order to derive suitable adjustment rules. At
the numerical level, the stability and unbiasness of the method is verified.

1 Introduction

Studying the computational power of neural networks with event-based activity
(e.g.: [1, 2]) is a well-addressed topic, see [3, 4] for a recent review about spik-
ing network computation, while [5] provides a detailed discussion on temporal
aspects of such computations. See [6] for further details on the related modeling
choices. In order to contribute to this general topic, we develop here a frame-
work allowing us to effectively adjust the network parameters in order to tune
the outcoming events.

Position of the problem We consider an input/output dynamical system with
N units, governed by a recurrent function, V = {· · ·Vn[t] · · · } being the output
state variable value of the units of output index n ∈ {0, N{ (i.e., 0 ≤ n < N) at
time t ∈ {0, T{. Some output units may be “hidden”, i.e. not observed. Here
W stands for the network parameters or “weights”, to be tuned. The exact
form of V is not relevant at this stage, but the gradient ∇WVW must be well-
defined in order to adjust W. One track is to consider regular forms of V. For
a spiking neuron network this means that we have to consider either Hodgkin-
Huxley equations, or some suitable reduction like the FitzHugh-Nagumo model
or the SRM model [2]. Another track, is to “mollify” V, i.e., defines it as the
limit of a series of regular functions, as experimented in [7].
We define an event Zn[t] def= H(Vn[t] − θ) ∈ {0, 1}, where H is the Heaviside
function, as the fact that the output value is higher than a threshold θ. The
goal is thus to adjust the output events Z of the deterministic discrete-time
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dynamical system V, with respect to a reference output events Z̄. The key point
is to deal with the fact that the notion of event is intrinsically “discontinuous”.

Considering alignment metric We define the distance between two finite event-
trains Z̄, Z as the minimum cost of transforming one event-train into another.
See [8, 9] for a general introduction. Following [5], we consider a generalized
alignment metric: non-stationary cost (e.g., recent events may count more than
older ones) and non-linear shift (e.g., neglecting tiny delays), as described in
Fig. 1. Two kinds of operations are defined for an alignment metric.
(i) Event insertion/deletion, the cost of each operation being set to γ±t̄ at time
t̄, e.g., γ±t̄ = 1, while non-stationary different insertion/deletion costs may be
defined.
(ii) Event shift, the cost to shift from one event in Z̄ at time t̄ to one event Z
at time t, being an increasing positive function of the non-stationary normalized
shift delay φt̄((t̄−t)/τ), for a given time-constant τ (e.g. φt̄((t̄−t)/τ) = |t̄−t|/τ),
while non-stationary non-linear different forward/backward shift-cost may be
defined, since φ() is parameterized by t̄.

From the upper to the lower event train is
shown, using from top to bottom an insertion,
a rightward shift, a leftward shift and a deletion
respectively

Fig. 1: An example of minimal alignment (borrowed from [8]).

Obviously the distance is zero (no editing operation) if and only if both
trains are equal, is always bounded by the number of events in both event-trains
(i.e. the cost of deleting/inserting all events), thus also by twice the number
of samples in the discretized case. For small τ , the distance approaches the
number of non-coincident events, since instead of shifting events it is cheaper
to insert/delete non-coincident events, while when τ → 0, γ±t = 1 we obtain
the coincidence (or Hamming) distance equal to the number of non-coincident
events. Given two time sequences with the same number of events, there is
always a τ high enough for the distance to correspond to the weighted sum of
time differences between both train events, as used in, e.g., [4]. More generally,
for high τ , the distance basically equals the difference in event number (rate
distance) [8].
When considering event-trains with more than one unit, our approach consists to
sum the distances for each unit alignment, i.e., consider each unit independently,
avoiding the related estimation to suffer from NP-completeness [9].

592

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.



2 Defining indexed alignment divergence

Since we want to tune the Z events in order to approximate the Z̄ events, let us
introduce an alignment indexation as follow: δ(t) = t̄−t if the two events Z[t] = 1
and Z̄[t̄] = 1 are aligned by a shift, δ(t) = ±0 to code for an insertion/deletion,
while δ(t) = 0 otherwise. In words, we not only compute the distance but make
explicit the alignment operations (shift, deletion, insertion) allowing to “edit”
Z in order to obtain Z̄. The δ code function is used to explicitly match both
trains.
The distance dk̄,k between the first k̄ events in Z̄ and the first k events Z and
the related δ indexing are iteratively defined by induction, after [8] but now
generalized (see [7] for a detailed derivation). We write tk, k > 0 the k-th
value such that Z[tk] = 1, with a similar notation for t̄k̄, k̄ > 0. On one hand,
dk̄,0 =

∑
l̄<k̄ γ

−
t̄l̄

, since the distance between any event-train and the empty
event-train corresponds to the cost of deleting all events, while δ(tk̄) = −0 in
this case. Similarly, d0,k =

∑
l<k γ

+
tl

corresponds to inserting all events, with
δ(tk̄) = +0. On the other hand:

dk̄+1,k+1 =

min


dk̄,k+1 + γ−t̄k̄

(deletion), δ(tk+1) = −0
dk̄+1,k + γ+

tk
(insertion), δ(tk) = +0

dk̄,k + φt̄k̄

(
t̄k̄−tk
τ

)
(shift), δ(tk) = t̄k − tk.

(1)

Obviously, several alignment operation sequences may lead to the same minimal
alignment cost. In order to make a choice, from the last time to the previ-
ous time, we consider that shift is preferable to insertion/deletion, since it is
a reasonable assumption to heuristic that it is going to have a less important
influence on the dynamics than the apparition/cancellation of an unexpected
event. This defines algorithmically a unique well-defined indexing function for
a given distance, as illustrated in Fig. 2, thus solves the ambiguities. On the
reverse, solving these ambiguities allows us to define algorithmically a unique
indexing function.
Although computing such a distance and indexes seems subject to a combina-
torial complexity, this is a quadratic algorithm (i.e. with a complexity equal to
the product of the numbers of events), and its derivation, done by induction, is
similar to usual alignment distance calculations [9, 5]. Regarding indexing, this
means that we do not have to explore all possible alignment operation sequences,
in order to define a globally well-defined process.
This indexing definition also allows us to enrich the original alignment distance
by not only considering a composite number describing the distance in terms
of shift and insertion/deletion, but allowing to make explicit a numerical ap-
proximation of the number of shifts versus insertion/deletion. This is the same
feature as in message-passing alignment mechanisms [10], but defined here in a
much simpler context.
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Edition is realized from the most recent event to
the oldest event in the past, i.e., from right to
left. The previous specification solves the ambi-
guity. A From right to left, shift is preferred to
insertion, thus shift precedes insertion. B From
right to left, two minimal shifts are preferred to
a higher shift and a event coincidence.

Fig. 2: Solving ambiguous equal distance alignments, in the case where a shift
cost equals the insertion/deletion cost.

3 Mollified version of the alignment distance

From the previous construction we now introduce the key idea of the paper,
i.e., propose a variational expression of the alignment distance. To this aim, we
“mollify” the event generation mechanism, i.e. replace the Heaviside function by
a suitable convolution Hυ = υ∗H = H(u+

√
υ ν) exp(−υ/(u+

√
υ ν)) where ν is

a margin maintaining the state at a non-infinitesimal distance to the threshold,
and υ → 0 is the mollification factor (see [6] for details)), as show in Fig. 3. We
obtain after some algebra given in [6]: d

(
Z̄,Z

)
= limυ→0 dυ

(
Z̄,V

)
, with:

dυ
(
Z̄,V

)
=

∑
nt,δ[t]=0 γ

±
t Hυ

(
(1− 2 Z̄n[t]) (Vn[t]− θ)

)
+

∑
nt,δ[t]6=0 φt

(
δ[t]
τ

) ( Zn[t]+
(1− Zn[t])Hυ

(
− δ[t]τ Hυ(θ − Vn[t])ν=0

) )
(2)

The key point is that now the criterion is not defined with respect to Z but
V. Qualitatively an increase of Vn[t] tends to shift event in the past, avoid
deletion but induce insertion of event, whereas a decrease of Vn[t] tends to shift
event in the future, induce deletion but avoid insertion of event. Changes are
now differentiable, thanks to the mollification and the gradient ∇Wdυ

(
Z̄,V

)
=

∇Vdυ
(
Z̄,V

)
∇WV is obvious to derive. We thus can tune V, thus W to opti-

mize the alignment metric as desired, with a straight-forward implementation for
a feed-forward system and the need of specific method for a recurrent structure,
as developed elsewhere [7]. The metric allows us to calculate the appropriate
network weights by a simple numerical minimization.
Since Hυ is convex for suitable υ [6], for a fixed value of δ the criterion is con-
vex as the sum of positively weighted functions. However the criterion is also
optimized with respect to δ and as soon as an event occurrence is modified by
a variation of the weights, the indexing is to be recalculated, while, up to our
best knowledge, there is no chance to guarantee a global minimum, so that we
now turn to numerical verification.
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It is drawn here for ν = 0 and in black,
brown, red, orange, yellow, green, blue,
for υ = [1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01],
respectively. The curves are convex be-
low the magenta horizontal line.

Fig. 3: Defining the mollification of the Heaviside function H().

4 Numerical experiment

Criterion calibration. In order to estimate the performance of the estimation,
we must first quantify to which extends we obtain numbers “better than by
chance”, i.e., to which extends the minimized alignment distance yields a better
result than if the output would have been random (a small distance may simply
mean that events are sparse !). In order to obtain a correct order of magnitude,
we considered the normalized alignment distance with respect to a random event
train of the same rate. More precisely, if two event trains of T samples are
drawn from a Bernoulli distribution of rates r (i.e., samples are random and
independent), it is straightforward to obtain the average coincidence distance,
i.e. E[d(Z̄,Z)] = 2T r (1−r). However, the same derivation is not obvious for an
alignment distance parameterized with τ and we have numerically interpolated
the value as a power of τ , for the standard alignment distance, obtaining for
γ±t = 1, φt(s) = |s|, with a residual standard deviation better than 1.5%:

E[d(Z̄,Z)] = 2T r (1− r) 1.183 + 0.183 r (1− r)
(τ + 1)0.265+1.444 r (1−r) .

Numerical robustness. Let us now illustrate the previous developments consid-
ering a leaky integrate and fire (LIF) network, as in [11]. As a test, we have
generated hundred of input/output data sets using a “master” network and
have verified that the learning algorithm applied on another model of the same
dimensions is able to find weights that reproduce the input/output function.
Weights values are randomly drawn from a Gaussian distribution of zero mean
and standard-deviation σ ∈ [0.1, 10]. The LIF resetting mechanism is mollified
as for the event thresholding.
This is a basic verification of both the correctness of the code and the numerical
stability of the estimation. Hundred of runs have provided correct results, as
expected. For long length T > 105 and complex dynamics the method may fail
finding the exact solution with the standard parameters. For small length epoch,
as expected, there is always an exact solution, in fact there is one, even if the
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raster is not generated from the same model [11].
These tests have been done for various values of τ ≥ 0 and using several values of
margin ν ∈ [0.01, 0.1]. The key point is that we can obtain good numerical results
“even if” profiles are finally very sharp, using the proposed continuation method,
consisting of numerically drive υ → 0. We have experimented using the conju-
gate gradient algorithm of the GSL (http://www.gnu.org/s/gsl) library, but
have also checked that this is not a critical choice. Robustness has been checked
for γ±t = 1, φt(s) = |s| and several for generalized metric also. Further numerical
results are provided as supplementary material of this submission, while the code
is available in the open-source EnaS library (http://enas.gforge.inria.fr).

5 Conclusion

The key point, here, is the non-learnability of even-based networks [12], since
it is proved that this problem is NP-complete, when considering the estimation
of both weights in the general case, except for exact simulation [11]. We show
that we can “elude” this caveat and propose an alternate efficient estimation
mechanism, inspired by alignment metrics used in spike train analysis [9], thus
providing a complement of other estimation approaches [4], beyond usual convo-
lution metric [9, 5]. At last, the proposed mollification is a series of convolution
metric, but that converges towards the expected alignment metric.
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engineering of spiking neural networks parameters. Research report, INRIA, 2010. in
preparation.
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