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Abstract. In this paper we propose a variant of the Generalized Ma-
trix Learning Vector Quantization (GMLVQ) for dissimilarity learning on
complex-valued data. Complex features can be encountered in various
data domains, e.g. Fourier transformed mass spectrometry or image anal-
ysis data. Current approaches deal with complex inputs by ignoring the
imaginary parts or concatenating real and imaginary parts in one real
valued vector. In this contribution we propose a prototype based classi-
fication method, which allows to deal with complex-valued data directly.
The algorithm is tested on a benchmark data set and for leaf recognition
using Zernike moments. We observe that the complex version converges
much faster than the original GMLVQ evaluated on the real parts only.
The complex version has fewer free parameters than using a concatenated
vector and is thus computationally more efficient than original GMLVQ.

1 Introduction

Machine learning methods which are able to deal with complex-valued (cv) data
attracted substantial interest recently [6, 7, 3, 4]. Complex-valued signals occur
in many disciplines and are of fundamental importance. Many modern life sci-
ence measurement systems generate cv-data, like, e.g. fMRI or NMR spectra.
Im many applications the imaginary part of the data is of significant importance.

Up to date most cv data is processed by either ignoring the complex na-
ture of the signal, by considering real and imaginary part independently or by
normalizing the data to remove the imaginary part [6, 5, 3].

Data are often converted to a real-valued representation for subsequent anal-
ysis. This however may lead to substantial errors or limits performance signifi-
cantly [8]. In this contribution we propose an extension of Generalized Matrix
Learning Vector Quantization (GMLVQ) for complex-valued data, taking real
and imaginary parts of the signal into account explicitly. The method is detailed
and evaluated on cv-benchmark data set and a real world data set using shape
descriptors.
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Fig. 1: Image reconstruction of Zernike-Moments on one example leave.

2 Methods

2.1 Complex-valued features

A widely used shape-descriptor1 of a two-dimensional object is given by the
Zernike-Moments [10]. Zernike-Moments are complex-valued moments based on
radial Zernike-polynomials (Vpq):

Zpq =
p+ 1

π

∫ 2π

0

∫ 1

0
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p = 0, . . . ,∞, |q| ≤ p and p−|q| even. Zernike moments constitute an orthogonal
basis for the set of complex functions and can be adapted to be rotation, scale and
translation invariant. Note that there are 1

2 (n + 1)(n + 2) linear independent
polynoms of degree ≤ n, since p − |q| is even. The Zernike-Moments of an
image function f of order p and repetition q is the orthogonal projection to Vpq.
For discrete data, using a coefficient representation (Bpqk) as given in [2], one
obtains:
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and mk−2j−q−m,2j+q−m are the regular normalized moments [5]. The origi-
nal image can be approximately reconstructed from a large set of moments as
f(x, y) = limN→∞

∑N
p=0

∑

q ZpqVpq(x, y)where the second sum is over all |q| ≤ p

with p− |q| even. A sample of the obtained reconstructions using different pa-
rameters is shown in Fig. 1.

2.2 Complex-valued Learning Vector Quantization

We extend the concept of GMLVQ [9, 1] to be used on cv-data. GMLVQ is a
prototype-based classification algorithm using the concept of adaptive similarity
learning. The aim is to place the labeled prototypes wj such that a high classi-
fication accuracy is achieved. We propose a variant designed for complex valued
training data x

i ∈ CN and prototypes wj ∈ CN accompanied with labels yi and

1For an overview about the topic see [5].
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c(wj) in the following referred to as Complex GMLVQ (CGMLVQ). The cost
function is defined by

E =

n
∑

i=1

ei =

n
∑

i=1

dJ − dK

dJ + dK
, (2)

with dJ denoting the distance to the closest prototype with the same class label
c(wJ) = yi as x

i and dK the distance of the closest wrong prototype w
K .

In the original GMLVQ formulation the distances are given by djo = (xi −
w

j)⊤Ω⊤Ω(xi−w
j). We define a dissimilarity measure for complex values using

a complex transformation matrix Ω ∈ CM×N

dj =
∑

|(xi −w
j)Ω⊤|2 = (xi −w

j)∗⊤Ω∗⊤Ω(xi −w
j) . (3)

where ∗ denotes the complex conjugate. The learning is done using a stochastic
gradient descent procedure presenting one example x

i at the time. We denote
one sweep through the randomly shuffled training set as an epoch. Derivatives of
the real-valued cost function and distances have to be taken with respect to the
real and imaginary parts of the variables, respectively. Upon presentation of a
single example xi we obtain updates of the form w → w−∆w and Ω → Ω−∆Ω

∆w =
∂ei

∂ℜ(w)
+ i ·

∂ei

∂ℑ(w)
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∂ei

∂ℜ(Ω)
+ i ·

∂ei
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. (4)

The derivatives are thus given by:

γJ =
2 · dK

(dJ + dK)2
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(7)

After every iteration the matrix Ω is normalized auch that
√

∑N
j=1 Ω

∗⊤
jj Ωjj = 1.

3 Experiments

To evaluate CGMLVQ we use an artificial three dimensional benchmark and a
real world data set for leaf recognition.

3.1 Artificial data

We construct an artificial data set in the following way: 1000 samples are drawn
from a three-dimensional uniform distribution with values between -1 and 1
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Fig. 2: Left panel: visualization of the three information containing dimensions
of the benchmark data set. Right panel: error development on the test data.

D = U(−1, 1) ∈ IR3. Whenever the product of the three dimensions is positive
the sample is assigned to class 1 and to class 2, otherwise. This results in a
checkerboard-like volume as shown in Fig. 2. The first two dimensions build the
real and imaginary part of the first complex dimension. The real and imaginary
part of the second dimension equal to dimension three. This two-dimensional
complex-valued data set is embedded into 10 dimensions as described in Eq. (8):

X = {D1+i·D2, D3+i·D3, {U(−0.5, 0.5)+i·U(−0.5, 0.5)} ∈ IR8} ∈ C10 . (8)

For the evaluation we perform a ten-fold cross-validation using 10% of the data
as a test set and t = 300 epochs. All algorithms are run with 4 prototypes per
class initialized near the class centers with small random deviation. The matrix
Ω is initialized as the identity matrix. The mean test error development per
epoch for all methods is shown in Fig. 2 in the right panel. It can be seen that
GMLVQ on the real values only, fails to learn the structure. This was expected,
because the class structure is built by a correlation of the real and imaginary
parts of the first two dimensions. Also the GMLVQ on the concatenated real and
imaginary parts, which takes into account pairwise correlations of the real and
imaginary parts, cannot achieve the quality of the CGMLVQ. In the complex
version it is possible to take pairwise correlations of the complex dimensions into
account. Inspection of GMLVQ and CGMLVQ reveals that GMLVQ has twice
the number of free parameters compared to CGMLVQ.

3.2 Leaf image classification

The Flavia-Dataset from [11] is a real world data consisting of 1907 images of
different leaves in 32 classes such as ginkgo, peach, oleander and others (see Fig.
3). In the original article [11] a training error of 98% and a test error of ≈ 90%
is reported. This was achieved using specific features and a probabilistic neural
network model but the evaluation was done on a simple training (1800) / test
(107) split rather a full cross-validation.
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Fig. 3: Examples of the green channel of 32 leave classes used for the experiment.

It can be expected that the samples can be sufficiently represented using the
shape information of the leaf. This motivates the use of Zernike-Moments (1)
which are known to provide optimal, complex-valued shape descriptors. We gen-
erated Zernike-Moments from the green-channel of the images, up to order 20
resulting in 121 complex-valued features per sample. The obtained feature vec-
tors have been normalized to zero mean and unit variance. We compare results of
CGMLVQ with GMLVQ on the real-valued features only and by concatenating
real and imaginary part.

We used the same experimental setup as for the artificial data but now with
one prototype per class. The evolution of the training and test error is shown
in Fig. 4. In this case the real values contain already a lot of useful information
for the classification task. However, the complex version converges much faster
taking into account the nature of the data explicitly. GMLVQ on the concate-
nated vector of real and imaginary parts can achieve a better classification in
this example, but with the additional costs of twice as many free parameters
than CMGLVQ.

4 Conclusions

In this contribution we propose a variant of the Generalized Matrix Learning
Vector Quantization (GMLVQ) for complex valued data called Complex GM-
LVQ (CGMLQ). Many applications which naturally deal with complex values
may benefit from methods which take into account the nature of the data rather
than ignoring or modifying the structure to fit into conventional techniques.
Concatenating the real and imaginary parts facilitates the use of all the infor-
mation. However, CGMLVQ reduces the number of free parameters. If the
data is expected to have just pairwise correlations between real and imaginary
parts the concatenation is recommended, but if correlations between complex di-
mensions are expected, CGMLVQ bears the capability to outperform the naive
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Fig. 4: Comparison of the training and test error development during training
for GMLVQ using only the real values and CGMLVQ.

approach. Further work should address the use of alternative dissimilarities (for
example localized matrices) and the exploration of more complex data domains.
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