
Constructive Reservoir Computation with
Output Feedbacks for Structured Domains

Claudio Gallicchio, Alessio Micheli and Giulio Visco ∗

Department of Computer Science - University of Pisa
Largo B. Pontecorvo, 3 - 56127 Pisa, Italy.

Abstract. We introduce a novel constructive algorithm which progres-
sively builds the architecture of GraphESN, which generalizes Reservoir
Computing to learning in graph domains. Exploiting output feedback sig-
nals in a forward fashion in such construction, allows us to introduce super-
vision in the reservoir encoding process. The potentiality of the proposed
approach is experimentally assessed on real-world tasks from Toxicology.

1 Introduction

Reservoir Computing (RC) [1] is an extremely efficient input driven paradigm
for modeling recursive systems. RC comprises different models, among which
the Echo State Network (ESN) [2] is undoubtedly the most popular and inves-
tigated one. An ESN is composed of a large, sparsely connected, non-linear
recurrent hidden untrained reservoir and of a linear feed-forward trained read-
out. Recently, RC has been generalized from sequence domains to structured
domains (SDs), i.e. variable size structures which include either sequences, trees
and graphs. TreeESN [3] and GraphESN [4] implement recursive systems, for
trees and graphs, respectively, exploiting the extremely efficient RC paradigm.

The automatic determination of the RC architecture and the limitations due
to the fixed reservoir dynamics (independent on the target) remain as interest-
ing open issues (e.g. [1, 5, 6]). In this paper, we cope with both such issues by
building on the GraphESN model a new constructive approach which allows us
to introduce stable output feedbacks on SD processing. In particular, inspired
by Cascade Correlation [7, 8], we introduce an algorithm to incrementally con-
struct the architecture of a GraphESN by progressively adding new sub-networks
which are trained to simulate the residual error of the model. The proposed con-
structive approach is the ground to introduce a novel general method to manage
output feedbacks in RC models, hence suitable for learning in SDs. This results
in a reservoir encoding process gradually modified during the network construc-
tion on the basis of the target information.

2 Constructive Output Feedbacks in GraphESN

A graph g is a couple (V (g), E(g)), where V (g) and E(g) are the set of vertices
and the set of edges of g, respectively, with E(g) = {(u, v)|u, v ∈ V (g)}. The
number of vertices in g is denoted by |V (g)|. The neighborhood of v is the set of

∗This work is partially supported by the EU FP7 RUBICON project (contract n. 269914).

31

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

i← 0;
repeat

i← i+ 1;
Add i-th sub-network
for all g ∈ G do

1- Encoding by i-th reservoir
end for
2- Train i-th readout
3- Compute z(i)

4- Train global readout
5- Compute y(i)

until (
∑

g∈G
(y(i)(g)−ytg(g))) ≤ εtr

(g)z
(1)

(g)z
(2)

(g)z
(3)

(g)y
(3)

Readout

Global

sub−network 3

sub−network 2

sub−network 1

ReadoutReservoir

ReadoutReservoir

ReadoutReservoir

g

Fig. 1: Left : Training algorithm. Right : Incremental top level architecture (for
i = 3). Symbols z(i) denote the outputs of sub-networks, y(i) is the global output
of the model (see text), and εtr is a threshold on the global training error.

adjacent vertices to v, i.e. N (v) = {u ∈ V (g)|(u, v) ∈ E(g)} for an undirected
graph, where |N (v)| is the degree of v. The maximum degree over the set of
considered graphs is denoted as k. The label associated to vertex v is denoted
by u(v) ∈ R

NU , where R
NU is the vectorial label input space.

GraphESNs [4] generalize RC to SD (graph) processing. A generalized reser-
voir architecture is used to encode each (variable size and topology) input graph
into a structured state representation isomorphic (i.e. with the same skeleton) to
the input. In analogy to ESNs, the reservoir of GraphESNs is left untrained after
contractive initialization, and training is required only for the parameters of the
readout. Considering graph-to-element tasks [4], i.e. tasks in which (variable
size and topology) input graphs are required to be mapped into vectorial out-
puts, a training set is represented as T = {(g,ytg(g))| g ∈ G, ytg(g) ∈ R

NY },
where G denotes a set of graphs, ytg(g) is the target output associated to g, and
R

NY is the vectorial output space. For the sake of simplicity, in the following
we assume NY = 1, e.g. ytg(g) ∈ {−1,+1} for classification tasks on graphs.

The constructive approach presented in this paper builds a cascade of Graph-
ESNs, progressively added and each trained to approximate the error obtained by
the already frozen sub-networks. Each GraphESN contains an input layer with
NU units, a generalized recurrent reservoir with NR units and a feed-forward
readout with NY = 1 unit. Fig. 1 shows the training algorithm for incremental
network construction and the resulting multi-layer network architecture, includ-
ing the functional dependencies among the network components.

Observe that, in the proposed incremental approach, the outputs of already
frozen sub-networks, trained to previous global error of the model and denoted as
z(i), are used to feed each newly added sub-network both in the readout part, as
in standard cascade models, and in the reservoir part, introducing output feed-
back in the encoding process. The proposed algorithm, based on forward output
feedbacks, is called GraphESN-FOF. The process of incremental construction
of the GraphESN-FOF architecture continues with the addition of subsequent
sub-GraphESNs until a stop condition is met (e.g. on the global training error,

32

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

see algorithm in Fig. 1). Note that the constructive scheme described here for
general SD can be also applied to standard RC for sequence processing tasks, as
whenever the input reduces to a set of sequences, GraphESN dynamics reduces
to standard RC one.

Let us start considering the i-th GraphESN added in the incremental archi-
tecture. The reservoir is used to encode (pass 1 of the algorithm in Fig. 1) each
input graph g into a structured state x(i)(g), which has the same topology of
g. This is realized by applying the same reservoir architecture to each vertex
v ∈ V (g), in order to compute a state label x(i)(v) ∈ R

NR according to the
equation:

x(i)(v) = tanh(Winu(v) + Ŵ
∑

v′∈N (v)

x(i)(v′) +wfof

i−1∑

j=1

z(j)(g)) (1)

where u(v) ∈ R
NU is the label attached to v, Win ∈ R

NR×NU is the input-to-
reservoir weight matrix, z(j)(g) ∈ R for j = 1, . . . , i − 1 are the outputs of the
previous sub-GraphESNs in the cascade (see Fig. 1) and wfof ∈ R

NR is the
forward output feedback weight vector, which is a new component introduced
here with respect to the correspondent equation in GraphESN [4]. The reservoir
is initialized to implement contractive dynamics and is left untrained. Assuming
tanh as reservoir activation function and Euclidean distance as metric in the
reservoir space, a sufficient condition for contractivity of reservoir dynamics is
given by σ = k ‖Ŵ‖22 < 1, where k is the maximum degree over G. Weights in
Win are drawn randomly from a uniform distribution over [−scalein, scalein].
Elements in wfof are all equal to wfof . The condition of contractivity, inherited
from ESNs and TreeESNs, has a relevant role for GraphESNs. According to the
Banach Theorem, contractivity of eq. 1 ensures stability of the encoding also in
case of cyclic and undirected input structures, which imply mutual dependencies
among reservoir state variables. Moreover, contractivity bounds the reservoir
dynamics within a region characterized by Markovian properties [9, 4]. The
encoding process is therefore practically implemented by resorting to an iterated
version of eq. 1, which is applied until convergence to a stable solution (i.e. the
fixed point of eq. 1). After the convergence of the encoding process, a mean
state mapping function is applied to get a fixed-size state representation for the
whole graph, i.e. χ(x(i)(g)) = (1/|V (g)|)∑v∈V (g) x

(i)(v).

The output of the i-th GraphESN is computed by the i-th readout (see Fig. 1):

z(i)(g) = f
(i)
out(w

(i)
out[χ(x

(i)(g))T , z(1)(g), . . . , z(i−1)(g)]T) (2)

where w
(i)
out ∈ R

1×(NR+i−1) is the i-th readout weight matrix and f
(i)
out is the

activation function for the units in the i-th readout (in this paper we use f
(i)
out ≡

tanh for every i). The global output of the network, when i sub-GraphESNs
have been added to the architecture, is finally computed by a global readout

y(i)(g) = fout(wout[z
(1)(g), z(2)(g), . . . , z(i)(g)]T) (3)

33

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

where y(i)(g) ∈ R is the global output of the network after the addition of
i sub-GraphESNs, wout ∈ R

1×i is the readout weight matrix and fout is the
readout activation function (in this paper we use fout ≡ id). As in standard

RC, only readout parameters (i.e. w
(i)
out and wout) are trained. In particular,

the i-th GraphESN is trained to simulate the residual error of the network at
the previous pass of the constructive algorithm, i.e. for each g ∈ G the target

for the i-th readout is z
(i)
tg (g) = y(i−1)(g) − ytg(g), where we assume y(0)(g) =

0. Hence, w
(i)
out is selected (passes 2 − 3 of the algorithm in Fig. 1) to solve

the least squares regression problem ‖w(i)
outX

(i) − (f
(i)
out)

−1(z
(i)
tg)‖22, where the

columns of X(i) contain the vectors [χ(x(i)(g))T , z(1)(g), . . . , z(i−1)(g)]T , ∀g ∈ G,
and z

(i)
tg is a row vector containing the elements z

(i)
tg (g) ∀g ∈ G, respectively

representing input and target information for the readout of the i-th GraphESN.

After the training process for the i-th GraphESN, the readout weights in w
(i)
out

are frozen and the global readout is (re-)trained (passes 4 − 5 of the algorithm
in Fig. 1) to solve ‖woutZ

(i) − (fout)
−1(ytg)‖22, where, for every g ∈ G, the

columns of Z(i) contain the vectors [z(1)(g), z(2)(g), . . . , z(i)(g)]T , and the row
vector ytg contains the elements ytg(g). The readouts in sub-networks and the
global readout can be trained as in standard RC, using direct methods, e.g.
ridge regression, or resorting to iterative LMS learning algorithm. Finally note
that the reservoir of each sub-GraphESN added in the architecture is fed by
the estimations of the global residual errors computed by the readouts of the
previous sub-GraphESNs (eq. 1). This introduces a form of supervision in the
reservoir encoding process, resulting in the progressive construction of reservoir
state representations influenced by the target.

3 Experiments

The potentiality of the GraphESN-FOF approach has been experimentally as-
sessed on the four tasks from the Predictive Toxicology Challenge (PTC) dataset
[10], reporting the carcinogenicity of 417 chemicals in correspondence of four
classes of rodents: female rats (FR), female mice (FM), male rats (MR), male
mice (MM). Each molecule is represented as an undirected graph, where vertices
stand for atoms and edges stand for bonds. Each vertex label contains a 1-of-m
encoding of the atom element and the partial charge. The label dimension is 24
and the maximum degree is k = 4. Four classification tasks are defined, one for
each class of rodents [11], where a target +1 is associated to active molecules,
and a target −1 is associated to inactive ones.

For model selection, we considered GraphESN-FOF with scalein ∈ {1, 0.1},
wfof ∈ {1, 2} and σ = 1. Sub-GraphESNs readouts were trained by ridge regres-
sion with regularization parameter λr ∈ {0.1, 0.2, 0.01}. Global readouts were
trained using LMS with weight decay parameter λwd ∈ {0, 0.01}. Reservoir di-
mensions NR = 30, 50 were considered. For comparison, analogous experiments
on GraphESNs were conducted, using the same parametrizations for scalein,
λr and σ, with NR ∈ {50, 100, 200, 500}. It is worth to note that in our ex-

34

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

periments, the number of trainable parameters for GraphESN-FOF (wout and

w
(i)
out) and GraphESN are comparable (roughly proportional to the total number

of reservoir units). We considered full connected reservoirs. The constructive
algorithm in GraphESN-FOF was stopped whenever the fitting on the training
set was analogous to the one achieved by GraphESN and the absolute difference
between the errors in two consecutive steps was below 1%. Accordingly, the
maximum number of sub-networks added varied between 6 and 20 on the four
tasks. Performance accuracy was evaluated by a 5-fold stratified cross validation,
with 5 independent reservoir guesses for every reservoir parametrization. Read-
out regularization and reservoir parametrization were chosen on a validation set
by an extra level of stratified 5-fold cross validation.

Table 1 reports the mean test accuracies on the PTC tasks for GraphESN
and GraphESN-FOF. The results show a small but consistent advantage (in 3
over the 4 cases) of the constructive adaptive approach of reservoir computation
in GraphESN-FOF with respect to standard GraphESNs. The performances of
GraphESN-FOF are also comparable to those achieved on the same tasks by
state-of-the-art kernels for SDs, e.g. Marginalized, Optimal Assignment (OA)
and OA with reduced graph representation, reported in [11].

Model FR FM MR MM

GraphESN 67.7(±0.1) 60.7(±0.4) 56.7(±0.9) 67.1(±0.1)
GraphESN-FOF (NR = 30) 67.9(±1.5) 62.8(±1.6) 57.4(±1.7) 65.4(±1.6)
GraphESN-FOF (NR = 50) 68.3(±1.1) 62.5(±1.2) 57.2(±1.3) 66.6(±1.7)

Table 1: Mean test accuracies (%) on PTC for GraphESN and GraphESN-FOF.

The effectiveness of the introduction of output feedbacks in producing a
reservoir state space organization progressively more suitable for the task at
hand is investigated using Principal Component Analysis (PCA). Fig. 2 shows
the first two PCs of the reservoir space of a GraphESN-FOF, in correspondence of
subsequent passes (i.e. sub-networks) in the iterative constructive algorithm for
the FR task. Points in the plots are the projections in PCs space of the encoded
training input graphs. White and black points respectively denote patterns with
positive and negative targets. Note that the separation among white and black
points progressively increases with the addition of sub-networks.

4 Conclusions

We introduced a new adaptive input driven model for learning in SDs, based on
the generalization of RC to graphs and named GraphESN-FOF. The contribu-
tions of this paper are twofold: a novel constructive approach for multi-layer RC
and a scheme for stable output feedbacks in RC for SDs. The methodology has
the advantage of automatically construct the RC architecture during training.
Moreover, the output feedback signals enable to introduce supervision in the
RC encoding process, with the aim of tailoring reservoir dynamics to the task

35

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

PC1

PC
2

PC1

PC
2

Fig. 2: PCA of sub-networks reservoirs for passes 1 (left) and 9 (right) of the
GraphESN-FOF construction with NR = 50 for the FR task.

at hand. The effectiveness of such contribution has been shown through the
analysis of the empirical results and of the PCA plots of reservoir spaces.

References

[1] M. Lukoševičius and H. Jaeger. Reservoir computing approaches to recurrent neural
network training. Computer Science Review, 3(3):127 – 149, 2009.

[2] H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic systems and saving
energy in wireless communication. Science, 304(5667):78–80, 2004.

[3] C. Gallicchio and A. Micheli. TreeESN: a preliminary experimental analysis. In Proceed-
ings of the ESANN 2010, pages 333–338. d-side, 2010.

[4] C. Gallicchio and A. Micheli. Graph echo state networks. In Proceedings of the IJCNN
2010, pages 2159–2166. IEEE, 2010.

[5] R. F. Reinhart and J. J. Steil. Reservoir regularization stabilizes learning of echo state
networks with output feedback. In Proceedings of the ESANN 2011, pages 59–64. Ciaco
- i6doc.com, 2011.

[6] F. Wyffels, B. Schrauwen, and D. Stroobandt. Stable output feedback in reservoir com-
puting using ridge regression. In Artificial Neural Networks - ICANN 2008, volume 5163,
pages 808–817. Springer, 2008.

[7] S. E. Fahlman and C. Lebiere. The cascade-correlation learning architecture. In Advances
in Neural Information Processing Systems (NIPS), pages 524–532, 1989.

[8] E. Littmann and H. Ritter. Learning and generalization in cascade network architectures.
Neural Computation, 8:1521–1539, 1996.

[9] P. Tiňo, B. Hammer, and M. Bodén. Markovian bias of neural-based architectures with
feedback connections. In Perspectives of Neural-Symbolic Integration, pages 95–133.
Springer-Verlag, 2007.

[10] C. Helma, R. King, and S. Kramer. The predictive toxicology challenge 2000-2001. In
Bioinformatics, number 17, pages 107–108, 2001.

[11] H. Fröhlich, J.K. Wegner, F. Sieker, and A. Zell. Optimal assignment kernels for attributed
molecular graphs. In Proceedings of the ICML 2005, pages 225–232. ACM, 2005.

36

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

