
An Exploration of Research Directions in
Machine Ensemble Theory and Applications

A. R. Figueiras-Vidal1 and L. Rokach2 ∗

1- Universidad Carlos III de Madrid,
Dept. of Signal Theory and Communications,

Avda. de la Universidad, 30, 28911, Leganés, Madrid, Spain

2- Ben-Gurion University of the Negev,
Dept. of Information Systems Engineering,

Beer-Sheva 84105, Israel.

Abstract. A concise overview of the fundamentals and the main types
of machine ensembles serves to propose a structured perspective for the
papers that are included in this special session. The subsequent brief
discussion of the works, emphasizing their principal contributions, permits
an extraction of a series of suggestions for further research in the fruitful
area of ensemble learning.

1 Introduction

Machine ensembles are drawing an increasing attention, and are swiftly be-
coming the method of choice for supervised learning, because they offer high
performance without requiring a very delicate design and a huge training effort.
This is due to their conception as an aggregation of the outputs of relatively
simple component machines, or units. As a consequence, an easy design of the
units and a not too difficult sizing of the ensemble are allowed, even if the units
and the aggregation scheme are jointly trained.

Adequately combining the modest capabilities of a number of machines al-
lows for a high representational power without the great obstacle of selecting
an appropriate (global) architecture or training it, as explained in [1]. The
connections of this approach to general concepts, such as collective intelligence
[2], which in the machine learning context can be interpreted as the power of
weak learners [3], is clearly discussed in [4]. We can say that machine ensembles
are a good combination of Occam’s Razor, which prefers simple models for ex-
planatory purposes, and Epicure’s Indifference Principle, which keeps all useful
models. We think that this conceptual perspective could contribute to an open-
ing of new avenues for machine ensemble design, and also for other objectives,
as we will explain later.

Of course, we do not pretend here to present a complete overview of machine
ensembles, not only due to space constraints, but because there are several
resourceful publications available [1][2][5][6] that already cover this topic. In the
remainder of this tutorial, we first introduce a (commented) general taxonomic
skeleton for machine ensembles, emphasizing some concepts and approaches we
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consider relevant. We then introduce the papers which are included in this
ESANN’2012 special session by locating them in the skeleton and remarking on
their perspectives and main contributions. Finally, we close with suggestions
for a number of potential research directions which stem from our observations
of the issues addressed by these papers.

2 Types of machine ensembles

According to our knowledge, the oldest example of a machine ensemble is Sel-
fridge’s Pandemonium [7] in which a number of simple units compete for pres-
ence in the final decision according to their confidence in their own results. This
scheme originated much work on committees, a basic type of ensembles in which
units are first trained to solve a problem, forcing diversity among them, and
subsequently their outputs are aggregated in an appropriate manner.

Diversity can be induced in many different ways such as different architec-
tures, costs, training algorithms, input variables, training examples, etc. Among
ensembles of this kind, Breiman’s bagging [8], which uses bootstrap to train ma-
chine units, and its particular form Random Forests (RFs) [9] which in general
designs trees with different sets of samples of reduced dimensions, are well-
known due to their easy training and aggregation (usually a direct method such
as the majority vote) and their good performance.

The so-called experts can be considered as the opposite approach, consisting
of a series of machines which are trained for a part of the training examples
(regions of the observation space), and individually selected to deal with new
samples according to their expertise domain. The difficulty in selecting adequate
regions for each expert and in applying appropriate training modes should not
be overlooked.

Naturally, the next step is to combine, in some sense, the above approaches.
This leads to what we can call collaborative ensembles. Mixtures of Experts
(MoEs), first proposed in [10], are ensembles in which experts’ outputs are
combined in a soft manner according to weights coming from a gate. MoEs
show a radical difference with respect to the above types of ensembles; the units
(experts) and the gate are jointly trained (in this particular case, by means of
algorithms which maximize the sample likelihood of the output, which is seen as
a Gaussian mixture for regression and the exponential version of binary random
variables for classification problems).

Valiant’s ideas produced the first machine ensemble result [11] in a sequen-
tial filtering form, followed by the seminal contribution of boosting [12],[13] for
classification purposes. The underlying idea is to sequentially train weak learn-
ers, forcing each new unit to pay more attention to the samples which produce
more difficulties to be learned, and to sequentially aggregate them by means
of linear combination. The surrogate cost, which was used in [12],[13], an ex-
ponential form of the margin cost (df , where d is the desired result and f the
output), allows optimization of both units and a combination of coefficients in
an easy way, though, this is not strictly necessary in order to obtain good de-
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signs [14]. There are also boosting modifications for regression purposes (which
do not offer impressive results), as well as other sequential algorithms, such as
Negative Correlation Learning (NCL) [15], which forces diversity by means of
penalizing the correlation among the outputs.

Boosting has demonstrated a remarkable (and perhaps unique) resistance to
overfitting, although they are affected by the presence of outliers or high levels
of noise. Moreover, many modified boosting algorithms reduce this sensitivity.

The success of boosting ensembles seems to have reduced the attention that
MoEs and other joint (of units and aggregation) designs receive. However, in our
opinion, trying to combine different approaches to design machine ensembles is
a good route to introduce diversity and increase representation capabilities. For
example, using gates to aggregate boosting learners can help alleviate overfitting
problems and, simultaneously, attain more expressive power, as the results of
a first design of this form [16] indicate. Even a simple reorganization of MoEs
[17] leads to compact architectures that offer excellent classification performance
when trained by means of Support Vector (SV) [18] algorithms. We assert that
combining global and local capabilities is an essential element in order to obtain
competitive designs.

In this short section we presented a coarse framework for ensemble learning.
The next section introduces the contributions to the special session.

3 Introducing the contributions to the special session

Four of the contributions deal with different aspects of what we will call com-
mittees.

Paper [19] analyzes a committee whose units are trained with randomized
versions of a learning algorithm. Consequently, their outputs can be considered
statistically independent for different examples. Thus, a statistical test can
be designed to identify instances that are close to decision borders. Paying
attention to these instances is very important to improve the performance of any
kind of classification machine, as the extensive experience in training example
selection and weighting indicates since the pioneering work of Hart [20]. It is
also relevant to select kernels for SV Machines and related architectures, as
discussed in [21] and subsequent contributions.

Work [22] proposes to construct committees of Extreme Learning Machines
(ELMs), that are an easy and efficient method for designing traditional forms of
Neural Networks (NNs), such as Single Hidden Layer Perceptrons (SHLPs), by
means of regularized linear combinations. Standard ELM designs have a lim-
ited performance due to the random design of their units, however, the authors
correctly state that SHLPs show enough complementary diversity and conclude
that an appropriate aggregation of their outputs will provide powerful commit-
tees which do not require a high design effort. Experimental results support
their point of view. Let us add that, in fact, the ELM design itself can be
considered a committee construction problem, and that many alternatives to
their standard versions do exist.
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Paper [23] defines a method for selecting the components of an ensemble
to solve multi-class classification problems by applying a well principled mea-
sure that includes diversity. The experimental results are again a proof of the
fundamental importance of diversity in machine ensembles.

From [19],[22],[23], one can conclude that there are some sources of diver-
sity that have not been sufficiently explored and that combining them, using
different diversity measures, and even introducing diversity in the aggregation
processes, can lead to improved committee designs.

The fourth paper of this group [24] shows that (apparent) oversizing of RFs
is important in order to get stability in both classification and feature selection.
We should note that RFs, although consisting of trees, are still considered to be
uncomprehensible, but are useful for variable selection. It could be interesting
to check whether other ensemble architectures present this advantage.

Poster [25] proposes a reduction of the target matrix of a multi-class classi-
fication problem, and a design of kernels by means of a boosting-type algorithm
applied to a linear combination of inner products of the outputs of some base
learners. This second process is a good example of how boosting ideas can be
applied to achieve very diverse objectives. As we mentioned before, boosting has
extended to an extensive variety of algorithms that apply very diverse progres-
sive sample weighting and aggregation modes. In our opinion, it is important
to get practical guidance on which modes are adequate to face which specific
problems. On the other hand, this diversity of boosting algorithms could be
used to construct ensembles of boosting ensembles.

Paper [26] comes from an area of application which is attracting more
and more interest, namely, distributed learning. The significant deployment
of communication facilities produces a pervasive expansion of many types of
distributed systems, an important fact when considering that distribution is a
primary source of diversity. The authors of [26] introduce a “collective” algo-
rithm based on error gradient diffusion which preserves data privacy and offers
a very definitive advantage, with respect to previous approaches, of maintain-
ing the ability to track environmental changes while at the same time providing
a good degree of convergence for stationary situations. Algorithm 1 in [24]
constitutes a key contribution to the introduction of the obviously necessary
(real-time) adaptation capabilities in applications which are inherently non-
stationary. However, at the same time, the notion of interchanging learning
orientations, such as error gradients, and their use by the learners, appears to
be a new possibility for construction of general collaborative ensembles.

4 Some suggestions for further research

The six works included in this special session would merit more extensive and
deeper discussion, however, space and personal knowledge limitations allow us
just to take a few general recommendations from their analysis of some funda-
mental aspects, with the hope of being useful for future research approaches to
the wonderful world of machine ensembles.
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1. Learning machines can provide useful information and guidance for design-
ing other machines or for their learning process. An interesting research
subject might be on which kind of appropriate information is available
and what kind of applications are associated with. Note that boosting
is an approach of this type, but there are interesting alternatives, such
as I-votes [27], which progressively construct simple learners by means of
an appropriate selection of samples, or diffusion algorithms. Of course,
combining these possibilities is also interesting.

2. Complementary diversity is a key element to build ensembles, both com-
mittees and collaborative schemes. There are diversity sources that have
not been fully explored such as randomness, and even task diversity [28].
Places and criteria to use diversity also need a deeper exploration. For
example, aggregation diversity is seldom considered. Again, combinations
can provide advantages.

Note, that 1 and 2 call for a creative revision of existing ensemble design
techniques.

3. There are some general problems that have not been fully addressed in
the machine ensemble literature. Among them, we feel that multi-class,
cost-sensitive, sparsity-aware and non-stationary learning are particularly
important.

4. Distributed learning is an area of research which has an increasing im-
portance and requires machine ensembles. An adequate revision of infor-
mation interchange options, plus the introduction of incremental or even
real-time learning, are critical questions to be addressed in order to find
practical solutions to many problems. Note that, additionally, this kind of
knowledge could be important to carry out an analysis of different aspects
of the human collective intelligence.

5. Following our human collective intelligence reference, we will close these
lines with an invitation to consider a challenging question: Since human
and machine decision making are essentially diverse, how can we combine
them to get better decisions and to favor human knowledge acquisition?
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