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Abstract. The Recurrent Temporal Restricted Boltzmann Machine is a
promising probabilistic model for processing temporal data. It has been
shown to learn physical dynamics from videos (e.g. bouncing balls), but
its ability to process sequential data has not been tested on symbolic tasks.
Here we assess its capabilities on learning sequences of letters correspond-
ing to English words. It emerged that the model is able to extract local
transition rules between items of a sequence (i.e. English graphotactic
rules), but it does not seem to be suited to encode a whole word.

1 Introduction

Several methods for dealing with temporal data have been proposed by the
machine learning community [1]. In this work we will focus on connectionist
models, whose application in this scenario was already discussed by J. Elman in
his landmark paper on simple recurrent neural networks (SRN) [2]. Since then,
many extensions and refinements on connectionist models have been developed,
in order to deal with even more complex domains, where data can be highly
structured [3].

The aim of this paper is to assess the capabilities of a recently introduced
probabilistic graphical model based on Boltzmann Machines [4], which is able of
manipulating sequential data through recurrent connections and it is therefore
called Recurrent Temporal Restricted Boltzmann Machine (RTRBM, from now)
[5]. It has some peculiar characteristics that make it interesting, not only from
an engineering point of view but also for applications in computational cognitive
modelling. First, the learning process is completely unsupervised because the
network only learns to reproduce the training data as accurately as possible. We
can therefore use it as a generative model, in order to produce new sequences that
have a similar structure of those seen before. Moreover, the learning procedure
is more biologically plausible than classical error-backpropagation. Boltzmann
Machines are also appealing because they can be used as building blocks in
hierarchical, “deep” networks (e.g., [6]).

Thus far, the RTRBM has been tested on learning video sequences [5]. For
example, it was shown to successfully extract the physical dynamics of bounc-
ing balls or motion capture data. Although such visual sequences are high-
dimensional and present high-level dependencies, their dynamics are generally
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smooth. Here we study the performance of the model on a symbolic task. The
network was trained on a set of English words, presenting one letter at a time.
We assessed if the model is able to extract the graphotactic rules of the language,
that is the compositional rules that describe how letters should be combined to-
gether in order to form plausible words. We compared the RTRBM ability of
predicting the next letter of a word with other baseline learning algorithms in
computational linguistics: n-gram models and Hidden Markov Models (HMMs).
We then tested the generative capability of the model and we analysed its in-
ternal representations (i.e. hidden units activations) in order to verify if the
network was able to produce static, holistic representations of whole sequences.
Here we show that the model principally extracts local transition rules instead
of memorizing the entire sequence.

2 The Recurrent Temporal Restricted Boltzmann Machine

A RTRBM is a partially directed graphical model with recurrent connections [5],
defined in such a way that at each timestep hidden units activations depend both
on the observed visible units (v) and on the previous hidden units (h) activations.
A graphical representation of such a model is given in Fig. 1, where the network
is unrolled over time in order to highlight sequential relations. RTRBMs are
an extension of the well-known Restricted Boltzmann Machines, which define
probability distributions over pairs of vectors exploiting a constrained graph
structure that allows to factorize conditional distributions over variables.

The joint distribution induced by an RTRBM is defined as:

P (vT1 , h
T
1 ) = P0(v1)P0(h1|v1)

T∏

t=2

P (vt|ht−1)P (ht|vt, ht−1)

where the factor P0(v1)P0(h1|v1) corresponds to the probabilities associated with
the first element of the sequence, when no previous context is available and
therefore we use an initial bias binit. If we know the current visible values vt and
the previous hidden values ht−1, the new hidden activations are computed as:

P (Ht|vt, ht−1) = σ(VH�vt + HHht−1 + bH) (1)

where σ is the sigmoid function, VH is the matrix of visible-to-hidden weights,
HH is the matrix of hidden-to-hidden weights and bH is the vector of hidden units
biases. Eq. 1 represents a mean field approximation, in which we consider the
average of the neural activations instead of their stochastic correlations. Since
we can compute the hidden units activations using this deterministic process,
it turns out that inference in RTRBMs is very efficient, given the values of
visible units, because we only have to sequentially compute hidden activations
using Eq. 1. If we know the current hidden units activations ht, the conditional
distribution of the binary hidden units and the visible units at the following
timestep is defined as:

P (Vt+1, H
′
t+1|ht) =

exp
(
v�t+1VHh′

t+1 + v�t+1bV + h′�
t+1(bH + HHht)

)

Z(ht)
(2)
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Fig. 1: The RTRBM architecture (left) and its unrolling over time (right).

where the factor (bH + HHht) represents the new biases for the binary hidden
units of the RBM at time t + 1, and it is computed taking into account the
hidden unit bias bH and the dynamic bias HHht generated from the hidden
units activations at the current timestep. Z is the so-called partition function
and it is used to normalize values into legal probabilities.

According to Eq. 1 and Eq. 2, we can define a generative process that allows
to get samples from the model distribution:

for 1 ≤ t ≤ T : {sample vt ∼ P (Vt|ht−1); set ht ← P (Ht|vt|ht−1)}
where the symbol ∼ indicates the sampling operation performed with block
Gibbs sampling, while the symbol ← stands for the deterministic assignment
obtained using the mean field approximation. When generating the values of
visible units, we thus need to use an MCMC algorithm, while once we have
the visible units activations and the previous hidden units activations we can
compute the new hidden units activations in just one step. See [5] for details.

3 Methods

The focus of our work was on the lexical level of written language, hence one
sequence corresponded to an English word. Previous research on phonotactic
learning exploited simple recurrent networks as neural models [7] and demon-
strated the effective capability of these systems to extract phonotactic rules from
a given set of data. Here we aimed at exploring the potential of the RTRBM
on the similar task of graphotactic learning, thus demonstrating that such a
model is capable of extracting these rules from experience, without needing an
explicit encoding of them or any prior knowledge about the task. Another de-
sirable feature that a sequences neural processor should exhibit is the capability
of developing rich holistic representations that correspond to whole sequences of
elements. When manipulating temporal information, the network should gradu-
ally create an internal description that will eventually represent the information
as a whole. In other words, the model should be able to encode dynamic in-
formation in a proper way such that we can perform further manipulations on
it directly over the internal (possibly static and distributed) representations,
instead of having to analyse the initial, external form of the data.
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The dataset used contained a large set of English monosyllables, thus almost
exhaustively describing their graphotactic rules. Each letter was codified as a
fixed-length binary vector using an orthogonal representation, hence the visible
layer consisted of 27 units (one for each letter plus one for a termination symbol).

Weights were randomly initialized to small values and the learning rate was
set to 0.3 and gradually decreased as the learning proceeded. The number of
steps performed by the Contrastive Divergence procedure was scheduled to be
small during the first phase of the training and successively increased. We first
trained an RTRBM with 110 hidden units over a small subset of 300 words (with
lengths between 3 and 5) and then tested the scaling capabilities of the model
by training another network with 200 hidden units over the complete dataset
(5300 words for training and 1700 for testing, with lengths between 3 and 7).

In order to reduce the computational time required by learning and generative
processes, we exploited NVIDIA graphic cards using the Gnumpy library [8] and
adopting a mini-batch learning strategy, obtaining a speed-up of about 25 times.

We first evaluated the performance of the network on making predictions
about the (t + 1)-th element of a sequence, given the previous t elements. In
other words, the model estimated the conditional probability of generating each
letter, given the evidence represented by the current context. These probabil-
ities represent the successor distribution associated with a certain context and
they should be as close as possible to the empirical successor distribution com-
puted on the training data [7]. We measured the prediction error by averaging
the Euclidean distances between the vectors of model expectations and empir-
ical distributions calculated for every possible prefix in the dataset. We then
compared performance of RTRBM with other two families of statistical models:
n-gram models, implemented as simple look-up tables where each row contains
the successor distribution extracted from training data for each possible context
(i.e. the last n letters analysed, with n varying between 1 and 3) and HMMs,
trained according to a previous work on phonotactic learning [9] using 7 and 40
hidden states.

The second metric adopted to evaluate the model consisted in testing its
generative performance. We therefore collected a fixed number of samples (s =

Fig. 2: Prediction errors on the training set (black) and on the test set (grey).
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300× number of training sequences) and calculated the accuracy (i.e. the ratio
between generated sequences that were present in the training set and s) and
the completeness (i.e. the ratio between generated sequences that were present
in the training set and the total size of the training set) of the generation.

4 Results

Fig. 2 reports prediction errors for each model. RTRBM obtained good perfor-
mance over the small dataset (comparable to the one obtained by the bi-gram
model), while its generalization ability over the large dataset did not improve
as it happened for the other models. As shown in Fig. 3, both indicators of the
generative capacity improved as training proceeded. Note that learning on the
large training set required more weights updates to converge, but the network’s
ability to generate the trained words during sampling was only slightly inferior to
that yielded after learning on the small dataset. Nevertheless, the low accuracy
during sampling suggests that the model is not encoding entire sequences, but
it mainly exploits local transition rules during the generative process. That is,
the network generated many legal sequences (words or pseudowords) that were
not present in the training set.

Analysis of the internal (i.e., hidden layer) representations, generated after
the production of the last letter of a word, revealed that the similarity between
the representations (calculated as Euclidean distances) is correlated with the
similarity between the corresponding sequences (measured with the Levenshtein
distance), with a correlation coefficient r of 0.42 (Fig. 4, left panel). Inspection of
the Euclidean distances between patterns (Fig. 4, right panel) revealed a bimodal
distribution, best fit by a mixture of two Gaussians: G1 (μ1 = 0.08, σ1 = 0.04)
and G2 (μ2 = 0.21, σ2 = 0.02) with mixing coefficients p1 = 0.20 and p2 = 0.80.
This implies that a consistent number of sequences are encoded using highly
similar representations, and this happens to be the case for the majority of words
with Levenshtein distance of one. Though it is still not completely clear how
this high similarity affects the discriminability between words, these observations
corroborate the hypothesis that the model is mainly exploiting local temporal
information when processing a sequence of elements.

Fig. 3: Sampling completeness and accuracy collected during training.
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Fig. 4: Correlation between internal representations similarity and Levenshtein
distances of corresponding words (left). Probability density functions of Eu-
clidean distances between internal representations (right).

5 Conclusions and Future Directions

In this paper, we evaluated the performance of the Recurrent Temporal RBM
model on learning sequences of letters corresponding to English words. Our re-
sults demonstrate that the network is able to learn local transition probabilities
between sequence elements, that is graphotactic rules of the language, although
its prediction ability does not fully match the performance of other state-of-the-
art algorithms. Our study also points to a potential limitation of the current
model, because its internal representations do not seem to encode the entire se-
quence in a way that allows perfect discriminability between different sequences.
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