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Abstract. Many different evaluation measures for dimensionality re-
duction can be summarized based on the co-ranking framework [6]. Here,
we extend this framework in two ways: (i) we show that the current pa-
rameterization of the quality shows unpredictable behavior, even in simple
settings, and we propose a different parameterization which yields more in-
tuitive results; (ii) we propose how to link the quality to point-wise quality
measures which can directly be integrated into the visualization.

1 Introduction

With more and more nonlinear dimensionality reduction (DR) techniques becom-
ing readily available, there is an increasing need for formal evaluation measures
to compare DR techniques, to optimize their parameters and solutions in case of
multiple optima, and to directly assess the quality of such mappings. In recent
years, several quality measures have been proposed [4, 6, 11], many of which can
be summarized based on the co-ranking framework as proposed in [6]. In this
contribution, we argue that the co-ranking framework covers even more cases
including, e.g., DR evaluation based on information retrieval principles [11].

The co-ranking framework in its current form, however, has a serious draw-
back: even if data and its projections can be directly inspected, it is difficult
to predict the characteristics of the quality measure depending on its parameter
K, the neighborhood size. The evaluation is typically subsumed in a quality
curve over all possible K. In several simple scenarios, we demonstrate that its
shape is hard to predict. We argue that this behavior comes from small or con-
tained errors in the mapping resulting in changes at a large range of K. Based
on this observation, we propose a different parameterization which yields more
predictable behavior and which can directly highlight structurally interesting
neighborhood sizes. By linking global quality measures to point-wise quantities,
this observation gives rise to an integration of the quality into the visualization
itself, similar to heuristic alternatives in topographic mapping such as [1, 8].

2 Evaluation measures for dimensionality reduction

DR techniques are used to map a high-dimensional dataset Ξ = {ξ1, . . . , ξN} ⊂
R

D to a low-dimensional dataset X = {x1, . . . , xN} ⊂ R
L, with L < D and

L = 2 or L = 3 for the purpose of visualization. Let δij be the distance from
ξi to ξj in R

D and dij the distance from xi to xj in the low-dimensional space.
The rank of ξj with respect to ξi in R

D is given by

ρij = |{k | δik < δij or (δik = δij and 1 ≤ k < j ≤ N)}| .
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Analogously, the rank of xj with respect to xi in the low-dimensional space is

rij = |{k | dik < dij or (dik = dij and 1 ≤ k < j ≤ N)}| .
The co-ranking matrix Q [6] is defined by Qkl = |{(i, j) | ρij = k and rij = l}|.
Errors of a DR mapping correspond to off-diagonal entries in this matrix. A
point j where ρij > rij is an intrusion, if ρij < rij it is an extrusion. Usually, a
DR mapping is not used to map all relationships of data faithfully. Often, the
focus is on the preservation of local relationships. The co-ranking matrix offers
a framework, in which several existing evaluation measures can be expressed,
as pointed out in [6]: Local Continuity Meta Criterion (LCMC) [3], Trustwor-
thiness & Continuity (T&C) [10], and Mean Relative Rank Errors (MRRE) [5].
Essentially, these quality measures correspond to weighted sums of entries Qkl

of the co-ranking matrix for regions k, l ≤ K and fixed neighborhood range K.
In [6], an intuitive (unweighted) sum has been proposed, the Quality QNX:

QNX(K) =
1

KN

K∑

k=1

K∑

l=1

Qkl. (1)

This summarizes all ‘benevolent’ points which change their rank only within
a fixed neighborhood K. To display the quality, usually the curve QNX(K) is
plotted for a range K > 1. At present, no generally accepted transformation of
this curve into a single meaningful value exists. In [7], an aggregated measure
is proposed which averages the quality for values K ≤ k0 where the splitting
point k0 is taken based on the distance of QNX to the baseline – however, this
automatic choice is yet very sensitive to minor changes in the data.

Interestingly, the quality measure QNX is identical to the Quality of Point
Neighborhood Preservation (QNP) as proposed in [4]. Further, it coincides with
the measures Precision and Recall from [11] based on an information retrieval
perspective, provided a local neighborhood of a point is defined by its K-nearest
neighbors in the original and the projection space, respectively.

Distinct alternatives to the co-ranking framework are offered by measure-
ments which rely on ε-neighborhoods instead of K-nearest neighbors [11], on
global correlations of the distances [4], or the distances of K-neighbors such as
in the topographic product [2]. Note that the latter two take a more global
perspective, judging the global topology preservation rather than local rankings.

3 Intuitive parameterization of the quality

Many different quality measures are essentially similar to the quality QNX by
taking a weighted sum over entries Qkl, k, l ≤ K of the co-ranking matrix. Even
in very simple settings, however, it is difficult to interpret the shape of the quality
curve QNX(K). We consider three simple scenarios. The original data consist of
three well separated Gaussian clusters in the plane containing 100 points each,
see Fig. 1a. As a ‘mapping’, we consider the points in two dimensions obtained
by (i) a random swapping of points within every cluster only, (ii) a switch of the
two leftmost clusters, (iii) the middle and leftmost cluster are stacked on top of
each other. These simple artificial mappings represent typical behavior of DR
mappings since they capture (i) local distortions, (ii) a tearing of regions, (iii)
and an overlay of regions, common effects of a too small projection dimension.
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(b) shuffled within clusters
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(c) left two clusters switched
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(d) left two clusters merged

Fig. 1: Quality evaluation on artificial data to demonstrate the interpretability
of the curves QNX vs. QND , for all settings of K.

The resulting curves QNX are depicted in Fig. 1. Although we know the exact
behavior of the mapping, it is not easy to link the shape of QNX to structures of
the mapping. Setting (i) yields local errors within the clusters of size 100 only,
still QNX is below the optimum 1 for all neighborhood sizes K, and it suggests
a (not existing) structural match at size 200 by a local maximum of the curve,
see Fig. 1b. A different parameterization of the quality which we will introduce
below, QND, yields the alternative as depicted in Fig. 1b. Here, it is clearly
visible that local distortions take place up to a neighborhood size 100 (within
clusters), while the mapping is almost perfect afterwards. The quality QNX

suggests perfect mappings for small neighborhood sizes up to 100 for setting (ii)
and a suboptimal mapping for all larger scales, manifested in a severe drop of the
quality for K > 100, see Fig. 1c. In contrast, the measure QND indicates a slight
drop of accuracy for the range K ∈ {100, . . . , 200} which exactly corresponds to
the region where the two leftmost clusters are switched. Similarly, QNX depicts
a mapping quality which is not optimum for all ranks K for case (iii) although
only the leftmost two clusters are stacked on top of each other, hence significant
distortions take place in the range K ∈ {1, . . . , 100} only. In contrast, this fact
is clearly indicated when regarding QND, see Fig. 1d.

What is the reason behind these effects? QNX uses the neighborhood size K
for two different purposes: on the one hand, K singles out the region of interest
by determining the size of the neighborhood of points taken into account, namely
ρij ≤ K. On the other hand, it determines the size and shape of errors which
are tolerated: rij ≤ K is not counted as an error in the region of interest.
Note that the actual size of the rank error is not considered at all as long as
the rank is smaller than K. This parameterization has the effect that small
rank errors can contribute to the shape of QNX(K) for every value K. Consider
the following extreme setting: Points are swapped pairwise as shown in Fig. 2.
Obviously, rank errors of size at most 4 occur due to the only local changes.

181

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.



This is clearly mirrored by the co-ranking matrix displayed in Fig. 2 for which
only four off-diagonals are not equal to 0. Due to the choice of QNX, however,
the quality does not approach one, rather errors occur for every neighborhood
K, see Fig. 2c. This property is shared by any quality measure which relies on
the same part Qkl, k, l ≤ K of the co-ranking matrix.

This observation also suggests how to change the parameterization of QNX

with respect to the co-ranking matrix to obtain more intuitive results, as depicted
in Fig. 3. As a first step, instead of taking a single parameter K, one can
decouple the control parameter for the region of interest Ks and the control
parameter for the tolerated errors Kt, thus summing over a rectangular part
Qkl, k ≤ Ks, l ≤ Kt, see Fig. 3b. As a second step, one can choose the error
tolerance based on the actual size of rank errors instead of accepting all ranks
at most Kt, i.e. we sum over κt off-diagonals instead of the first Kt columns,
see Fig. 3c. This choice yields a quality measure parameterized by the region of
interest Ks and the tolerated rank error κt:

QND(Ks, κt) =
1

KsN

∑

i≤Ks

∑

j:|i−j|≤κt

Qij .

To reduce the number of parameters and hence the complexity, we suggest
to choose the tolerated error to be of the same size as the region of interest:
κt = Ks =: κ, resulting in a reparameterized quality where, similar to [6], nor-
malization takes place to guarantee values in the interval [0, 1]:

QND(κ) =
1

κN

∑

i≤κ

∑

j:|i−j|≤κ

Qij .

Unlike QNX, the measure QND makes sure that small rank errors contribute only
to values QND(K) for small K and they do not spread over the entire quality
curve, making the behavior more predictable.
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Fig. 2: The left shows a simple switching scheme of one-dimensional points.
Obviously, rank errors are at most four (in case of tie breaks) in this setting.
This is mirrored by the shape of the co-ranking matrix (in the middle for the
same setting with 20 points) for which four off-diagonals are non-vanishing, and
by QND(K)=1 for all K > 4, while QNX(K) < 1 for almost all K (on the right).
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Fig. 3: Change of the summation area of the co-ranking matrix to better control
the region of interest and the tolerated rank errors.

4 Point-wise quality measure

It has been pointed out e.g. in the work [1, 8] that a given visualization should
also provide a direct intuition in how far it can be relied on. Ideally, together with
a mapping of points, the quality of a mapped point should be visualized directly
at its respective location. While the approaches [1, 8] provide very effective
heuristics to do so, surprisingly, none of the formal DR evaluation measures
have been used so far to directly visualize the quality of the projections.

Note that the co-ranking matrix can easily be accompanied by a correspond-
ing point-wise framework: Qi

kl = |{j|ρij = k and rij = l}| which gives rise to
point-wise quality measures Qi

NX(K) =
∑

k≤K

∑
l≤K Qi

kl/K and Qi
ND(K) =∑

k≤K

∑
l:|k−l|≤K Qi

kl/K which, averaged over all points, again yield the quality

measures QNX and QND, respectively. These measures can be used to display,
together with the DR, the quality of the projection at every point by means of
a color value corresponding to Qi

NX(K) or Qi
ND(K) for relevant K. Thereby, K

can be chosen according to relevant structural criteria such as a local extremum
of the curve QNX or QND, or it can be chosen interactively according to the users
needs.

An example is given in Fig. 4 for the classical swiss roll data set visualized
using t-SNE [9] and choosing K according to the first local optimum of the qual-
ity curve. Interestingly, the measure Qi

ND(K) clearly singles out positions where
tearing and topological mismatches occur, while Qi

NX(K) shares the problem of
QNX that local rank errors can affect different regions of the curve, thus also
indicating many less pronounced points in the mapping.

5 Conclusions

We have discussed quality measures based on the co-ranking framework and
problems which arise if quadratic regions of the matrix are used to define a
quality measure. In contrast, we have proposed an alternative parameterization
scheme which yields more intuitive behavior, and by linking the co-ranking ma-
trix to a point-wise version, which also offers meaningful local color values to
visualize the quality of a given mapping. Note that it may be worthwhile to also
study the behavior of the quality matrix QND(Ks, κt) depending on both pa-
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Fig. 4: A mapping of the swiss roll data by t-SNE (with a perplexity of 50),
colored by point-wise qualities Qi

NX(14) (left) and Qi
ND(14) (right). The coloring

clearly indicates the tearing of the original manifold, with less ambiguity in Qi
ND

on the right. (The sequence of class labels from the inside to the outside of the
original spiral-shaped manifold is: ◦����.)

rameters, the relevant range Ks and the tolerated rank errors κt, since it allows
users to interactively choose appropriate values according to a given application.
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