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Abstract. In this paper, we present a WiSARD-based system facing
the problem of Indoor Positioning (IP) by taking advantage of pervasively
available infrastructures (WiFi Access Points – AP). The goal is to develop
a system to be used to position users in indoor environments, such as:
museums, malls, factories, offshore platforms etc. Based on the fingerprint
approach, we show how the proposed weightless neural system provides
very good results in terms of performance and positioning resolution. Both
the approach to the problem and the system will be presented through two
correlated experiments.

1 Introduction

Positioning estimation can be defined as the process of estimating the position of
a target node in a wireless network (cellular phone, base station, wireless sensor),
by exchanging signals between the target node and a number of reference nodes
[1]. The position of a target node can be estimated by the target node itself (self-
positioning), or it can be estimated by a central unit that obtains information
via reference nodes (remote-positioning)[2].

There exist three main approaches to the IP problem with off-the-shelf hard-
ware: distance measurement systems, where locations of multiple transmitters
have to be known; as well as for angle of arrival systems [3]; and fingerprinting
[4] [5]. The latter is based on the idea of selecting a number of reference points
(fingerprints) and measuring the signal strengths of visible transmitters at those
points. This information is then used to compare the signal strength during
the actual positioning to find the best match or matches by some method of
interpolation [6].

The fingerprint positioning method is divided into two main phases: a train-
ing phase (calibration phase) and a positioning phase. In the first phase, the area
is split in several reference points (fingerprints) where the system collects and
stores Received Signal Strength (RSS) values measured at each point. Then, in
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the second phase, the system uses those values to compare the values measured
by the target node in order to determine its position.

This can be carried out both in a probabilistic way (such as: kernel [7],
histogram [8]) and in a deterministic way (such as: k-nearest neighbour, com-
pressive sensing [9], artificial neural networks [10]). Also, in order to help the
positioning system, the idea of modelling user mobility can improve the system
performance. Most of the related approaches are based on Kalman filters [11]
and on particle filters [12].

The following is how the remainder of the text is organised. The next section
presents WIPS, implemented by means of a weightless neural system and based
on the fingerprint positioning approach. Section 3 describes the experimental
set up and results. Conclusion and future works are discussed in the last section.

2 Setting up the WIPS

WiSARD has been the first commercial neural machine and was introduced
by Aleksander et al in the early 80’s [13]. The WiSARD is composed by a
given number of discriminators, each one representing a different class. Each
discriminator is built from X n-tuple RAM nodes (one-bit words), all initially
set to “0”. These RAM nodes are commonly called neurons. During the training
phase, a X × n bits binary input pattern is presented to the corresponding
discriminator so that all addressed RAM memory locations are set to “1”. In
the classification phase, the sum of all the memory contents addressed by a
given input pattern represents each discriminator response. Such input pattern
is associated to the discriminator class whose response is the highest (see [14]).

2.1 Training phase

The space where the positioning is being deployed has been discretely parti-
tioned. Each area represents a fingerprint thus, in our case, the fingerprint is
not represented as a point on the map but rather as an area. The WiSARD is
formed by as many discriminators as the number of different fingerprints.

In the first experiment reported in the next section, the area has been split
in 62 different fingerprints. There exist a total of 32 different APs that cover all
the considered area. For each RSS, WIPS takes into account the MAC address,
the signal Strength and the signal Noise (from now on referred as MSN). The

Fig. 1: Institute upper right fingerprint. Fig. 2: Institute lower left fingerprint.
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Fig. 3: Institute floor plan

system input is represented by a black and white image in which the MAC
address is the row index and for every two consecutive rows, the signal strength
and its noise is represented by a black bar. The graphical representation of two
different MSN patterns (100 × 124 pixels) are illustrated by Fig. 1 and Fig. 2.
Each discriminator has been trained with randomly selected MSN observations
collected inside each area.

2.2 Positioning phase

User positioning is achieved by the system with just one MSN observation (the
more you have the better is). No signal pre-processing is carried out by the
system and all 62 discriminators analyse the input at once. The discriminator
with the highest response represents the fingerprint where the input pattern
(MSN observation) has been detected. We would like to point out that in those
few cases in which the system does not correctly position the users, the highest
response is always given by those discriminators representing immediate neigh-
bours. Furthermore, the resolution of the system is enough to fullfill its task; in
fact, even when we push the resolution to smaller fingerprints (see next section),
the system performs well and it should correctly position users for the sake of
emergency evacuation.

3 Experiments and results

To test our approach we carried out two different experiments. In the first one,
we considered accessible areas (offices, laboratories, corridors and open spaces,
see Fig. 3) of a floor of “Istituto di Cibernetica”. The total area was split in 62
subareas (fingerprints) whose size varies between 8 and 12 m2. In this case, we
had in mind to adopt WIPS in case of emergency evacuation. This resolution is
enough to ensure that everyone in the area will be rightly positioned by WIPS.
In the second experiment, we increased the resolution of WIPS, considering the
Institute hall as area to be controlled (see Fig. 4), having 24 fingerprints of 4
m2 each.

For both experiments, we collected the RSS information walking inside each
fingerprint area. Other information, such as angles and distances from APs, were
not taken into account. That is, each observation consisted only of MSN data.
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Fig. 4: Hall fingerprints

The two tests were leave-one-out cross-validation (LOOCV) procedures, where
each fingerprint was considered a class to be distinguished from the others. The
complete datasets consisted of 13 to 21 observations of each class, which were
later divided into folds for the procedures.

Through the use of LOOCV, each dataset observation was given as a query to
WIPS, producing as output a rank of all classes. A correct answer to the query
is assumed according to an evaluation parameter called Confidence Threshold
(CT), which represents how hard is the evaluation criterium used: a high CT
means a harder criterium. Fig. 5 illustrates how the same output has different
interpretations according to different CT values.

The score a WIPS instance can attribute to a class varies from 0 to its number
of neurons. We compared different WIPS setups using values of CT from 90%
to 100% to show how a greater range of score values lets the rank entries be
relatively closer to each other, which permits better hit rates of WIPS instances
with more neurons. The hit rate is the fraction of queries correctly answered
considering a certain value of CT divided by the total number of queries.

The results for the first experiment are presented in Fig. 6. They show that
even when considering the hardest acceptance criteria, using CT = 100%, WIPS
maintains its high quality performance.

The same kind of graph for the second experiment (Fig. 7a) shows lower hit
rates, which was expected since the system needed to deal with smaller finger-
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Fig. 5: To evaluate WIPS, an observation whose real class, c, is known is input
as a query. A rank of all classes and their respective scores is output. Class c
score divided by the highest score is β = 94/98 ' 0.95. Iff β ≥ CT , the output
is accepted as correct.
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Fig. 6: Experiment 1 results. Observations size: 100× 124 pixels ⇒ Input size:
12400 bits. 1000 neurons ⇒ 13-tuple nodes; ... 125 neurons ⇒ 100-tuple nodes.

prints representing a finer-grain resolution. A grid graph, where the fingerprints
disposition is the same used during data gathering, is reported in Fig. 7b. A
generic fingerprint α is colored according to the average (Manhattan) distance
from itself to the classes WIPS attributed the highest score when queried about
an observation of α. This graph shows that even when missing, the system
answer was good, being very close to the right one.
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Fig. 7: Experiment 2 results. Observations size: 100 × 50 pixels ⇒ Input size:
5000 bits. 1000 neurons ⇒ 5-tuple nodes; ... 125 neurons ⇒ 100-tuple nodes.

4 Conclusion and future work

In order to improve the WIPS performance we are going to adopt the DRASiW
version of WiSARD [15] in which the bleaching is used to better identify the
best response from the discriminators. Many times, there are few discriminators
whose responses are very close to each other and grouped around the highest
response. The bleaching procedure can refine these responses and choose the
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discriminator having the most accurate response.
A further improvement is that of adopting a hybrid strategy (Agent WiSARD

[16]) for pedestrian dead reckoning. A symbolic module can follow the user
movements and can help WIPS choosing the right discriminator response on the
basis of a plausible user path. Such path would belong to a graph where each
node represents a fingerprint and each arc the possible user movement.
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