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Abstract. The imbalanced nature of some real-world data is one of the
current challenges for machine learning, giving rise to different approaches
to handling it. However, preprocessing methods operate in the original in-
put space, presenting distortions when combined with the kernel classifiers,
which make use of the feature space. This paper explores the notion of
empirical feature space (a Euclidean space which is isomorphic to the fea-
ture space) to develop a kernel-based synthetic over-sampling technique,
which maintains the main properties of the kernel mapping. The proposal
achieves better results than the same oversampling method applied to the
original input space.

1 Introduction

Imbalanced classification is currently receiving a lot of attention from the pattern
recognition and machine learning communities [1, 2]. Often, the minority class
happens to be more important than the majority one, but it may also be much
more difficult to model and identify complex underlying behaviour patterns due
to the low number of available samples. Since most traditional learning systems
have been designed to work on balanced data, they will usually be focused on
improving overall performance and be biased towards the majority class, conse-
quently harming the minority one [3]. To cope with this issue, several algorithms
have been designed over the years to over-sample minority samples and to under-
sample the majority ones, the Synthethic Minority Over-sampling Technique [1]
(SMOTE) being one of the most representative for the first group, among others.

At the same time, kernel methods [4] have been spreading rapidly and gaining
more acceptance from machine learning researchers due to their good general-
ization ability and their determinism. These methods make use of the so-called
kernel trick, which implicitly maps their inputs into a high-dimensional fea-
ture space via a function Φ(·), in order to compute non-linear decision regions.
When these methodologies are combined with other preprocessing techniques
which operate in the input space (such as over-sampling techniques), some obvi-
ous distortions are found, given that they operate in different spaces. The ideal
approach would be to preprocess the training patterns in the feature space,
although this is not possible since the only information available is the dot prod-
ucts of their images. To deal with this issue, this paper makes use of the notion
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of empirical feature space [5, 6], which has demonstrated to preserve the geo-
metrical structure of the original feature space, given that distances and angles
in the feature space are uniquely determined by dot products and that the dot
products of the corresponding images are the original kernel values. This em-
pirical feature space is Euclidean, so it provides a tractable framework to study
the spatial distribution of Φ(·) [7, 8], to measure class separability [6] and to
optimize the kernel [6, 9]. Besides, the notion of empirical kernel feature space
has been used for the kernelization of all kinds of linear machines [10, 11], with
the advantage that the algorithm does not need to be formulated to deal with
dot products between data points. This paper focuses on the idea of performing
over-sampling in the empirical feature space, instead of in the input space. This
Euclidean space is isomorphic to the feature space, hence we hypothesize that
the synthetic patterns generated would be better adapted to the kernel machine
classifier.

The idea of performing over-sampling in the feature space was researched in
[12] (note that in our case, it is performed in the empirical feature space). In
this previous work, the synthetic instances were generated by using the geometric
interpretation of the dot products in the kernel matrix, and the pre-images of the
synthetic instances were approximated based on a distance relation between the
feature space and the input one, since inverse mapping Φ(·)−1 from the feature
space to input space is not available. Our proposal is free of the computational
cost and assumptions of this inverse mapping approximation.

The paper is organized as follows: Section II shows a description of the
methodology used; Section III describes the experimental study and analyses
the results obtained; and finally, Section IV outlines some conclusions.

2 Methodology

The methodology proposed is based on applying the SMOTE over-sampling
technique to the empirical feature space. Consequently, the notion of empirical
feature space is described, along with a presentation of how to extend SMOTE
to better handle imbalaced datasets when applied to kernel classifiers.

2.1 Empirical feature space

Assume that X ⊆ Rd is a nonempty collection of objects, and {x1, . . . ,xm}
is the set of their vector representations in some input space. Thus, x ∈ X ,
where this d-dimensional X set represents the training set. Assume that k is
a symmetric real-valued kernel function, k : X × X → R. Let Φ : X → H
be a mapping of patterns from X to a high-dimensional or infinite-dimensional
Hilbert Space H. When applying the kernel trick, the only information available
about the images of the input patters in H is their dot or inner product, which is
represented by the kernel function computed using the original input patterns,
k(x,x′) = 〈Φ(x),Φ(x′)〉H. The kernel trick turns a linear decision region in H
into a nonlinear decision in X . Therefore, instead of working directly with x,
a pattern is now represented by its similarity to all other points in the input
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domain, organized in a Gram matrix containing the kernel function values for
all the training data, Kij = k(xi,xj). The requirement of positive definite
or reproducing kernels is important since the use of these matrices is a key
assumption in convex programming, ensuring in practice that kernel algorithms
converge to a relevant solution. Hence, since any given Gram matrix K of rank
r will be a symmetrical positive-semidefinite matrix, it can be diagonalised as:

K(m×m) = P(m×r) ·M(r×r) ·PT
(r×m), (1)

where (·)T is the transpose operation, M is a diagonal matrix containing the r
positive eigenvalues of K in decreasing order, and P consists of the eigenvectors
associated to those r eigenvalues. The empirical feature space is a Euclidean
space preserving the dot product information about H contained in K. The
mapping from the input space to a r-dimensional empirical feature space can be
defined, Φer : X → Rr, where r is the rank of K. This space is isomorphic to the
embedded feature space H, but presents all the advantages of being Euclidean:

Φer : xi →M−1/2 ·PT · (k(xi,x1), . . . , k(xi,xm))T. (2)

It is easy to check that the kernel matrix of the training images obtained by this
transformation is K, when considering the standard dot product [5, 6]. Note that
this transformation corresponds to the principal component analysis whitening
step [13], although applied to the kernel matrix, instead of the covariance matrix.
Although the whole set of all r positive eigenvalues has been considered in this
paper, a smaller set (for example, a p-dimensional set) could also be considered
by choosing the p dominant eigenvalues and their associated eigenvectors. This
would limit the dimensionality of the empirical feature space.

2.2 Synthetic minority over-sampling in the empirical feature space

The proposal consists of using the empirical feature space to apply preprocessing
algorithms, whose results would better suit the kernel machine classifier later
considered. In this paper, the SMOTE algorithm was selected to decrease the
problems caused by imbalanced datasets when applying a kernel classifier.

First of all, we compute the empirical feature space of the training set.
Te

(m×r) is the matrix generated by applying the Φer transformation (equation

(2)) to the training patterns. After this, the standard SMOTE algorithm [1] is
run over the minority class images of this Te matrix, resulting in the generation
of n new synthetic images, arranged in the matrix Se(n×r).

Synthetic samples will be used to complete the kernel matrix, by obtaining
their dot product with respect to the rest of the training patterns, i.e. KSei,j =
Te
i ·Sej , 1 ≤ i ≤ m, 1 ≤ j ≤ n, and with respect to themselves SSei,j = Sei ·Sej , 1 ≤

i, j ≤ n, where Te
i is the empirical space representation of the i-th training

pattern, and Sei is the i-th synthetic sample previously generated. Using these
matrices, the over-sampled training Gram matrix K∗ will be composed as follows:

K∗(m+n)×(m+n) =

(
K(m×m) KSe(m×n)(

KSe(m×n)

)T
SS(n×n)

)
, (3)
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where K is the original kernel matrix. For the generalization phase, the same
steps are considered to complete the test kernel matrix, taking into account that
the empirical feature space images of the test patterns are derived using the
same Φer transformation (considering only the training data).

3 Experimental results

The proposal has been evaluated considering the Support Vector Classifier (SVC)
[14] and the SMOTE technique [1]. This proposal (Empirical feature space
SMOTE, E-SMOTE) is compared to the original SMOTE applied in the input
space, and to the results without over-sampling. 8 binary benchmark datasets
from the UCI repository with different imbalance ratios (proportion of major-
ity patterns with respect to minority ones) have been tested. Some multiclass
datasets have also been considered by grouping some classes, e.g. ecoli1 repre-
sents the ecoli dataset when considering class 1 versus the rest, and glass0146vs2
is the glass dataset when grouping classes 0, 1, 4 and 5 versus class 2.

A stratified 10-fold technique was performed to divide the data, and the
results are taken as mean and standard deviation of the selected measures over
the 10 test sets. The Gaussian kernel was used. The kernel width and the
cost parameter of SVC was selected within the values {10−3, 10−2, . . . , 103}, by
means of a nested 5-fold method applied to the training set. The number of
synthetic patterns generated was that needed to balance the distributions, i.e.
after applying SMOTE, the number of majority and minority patterns were the
same. k = 5 nearest neighbours were evaluted to generate synthetic samples.

The results have been reported in terms of three metrics: 1) the well-known
Accuracy metric (Acc); 2) the Geometric Mean of the sensitivities (GM =√
Sp · Sn), where Sp is the sensitivity for the positive class (ratio of correctly

classified patterns considering only the positive class) and Sn is the sensitivity
for the negative one; and 3) the Minimum Sensitivity [15] (MS = min {Sp, Sn}).
GM and MS are specially aimed at measuring the performance of a classifier
when handling imbalanced data. The measure considered during the hyperpa-
rameter selection was GM , given its robustness when considering imbalanced
datasets. All the test results of these experiments can be seen in Table 1.

From the results obtained, several conclusions can be drawn. Firstly, the
good performance of the proposal can be appreciated analysing GM and MS
measures, where it can be seen that the application of the over-sampling tech-
nique in the empirical feature space outperforms the results achieved when apply-
ing it in the original input space. Standard deviations of GM and MS measures
are high considering that the number of patterns of the minority class in the test
set can be very low and that misclassifying a single positive pattern can result
in drastic variations of Sp (and consequently in GM and MS). However, these
standard deviations tend to be lower for the proposed method, which could in-
dicate that it is more stable. Concerning Acc, the proposal achieves comparable
results to those obtained by the other methods (especially for low IR values).

Finally, the non-parametric Friedman’s test [16] (with α = 0.1) has been
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Table 1: Results achieved by the three methodologies considered, where IR refers
to the imbalance ratio of a dataset.

Dataset IR Method Acc GM MS

colic 1.72
E-SMOTE+SVC 82.60± 3.93 81.03± 5.19 74.36± 8.82
SMOTE+SVC 81.52± 5.51 79.29± 6.04 71.85± 9.71

SVC 81.52± 5.07 79.15± 6.45 72.19± 11.38

breast 2.36
E-SMOTE+SVC 69.61± 8.73 64.72± 9.48 55.17± 11.43
SMOTE+SVC 67.19± 11.62 62.76± 9.36 53.06± 12.41

SVC 65.79± 8.96 44.29± 19.43 28.89± 17.07

haberman 3.15
E-SMOTE+SVC 68.94± 9.39 60.59± 13.21 49.77± 18.31
SMOTE+SVC 70.27± 8.24 61.68± 11.00 50.25± 16.94

SVC 68.30± 8.97 45.10± 9.66 26.81± 13.67

ecoli1 3.36
E-SMOTE+SVC 87.19± 4.94 86.43± 6.90 80.09± 9.64
SMOTE+SVC 86.60± 6.05 86.03± 7.17 79.32± 9.55

SVC 90.13± 5.19 81.51± 18.54 72.77± 26.58

spectfheart 3.84
E-SMOTE+SVC 76.11± 7.45 77.63± 6.48 69.45± 8.14
SMOTE+SVC 75.01± 8.36 75.16± 8.96 67.81± 9.13

SVC 76.82± 8.59 58.26± 24.33 45.67± 24.14

glass0146vs2 11.05
E-SMOTE+SVC 82.62± 10.70 64.47± 36.61 56.52± 34.05
SMOTE+SVC 86.45± 10.72 49.99± 44.59 44.21± 41.73

SVC 88.38± 4.99 16.05± 34.27 13.42± 29.42

cleveland0vs451 12.31
E-SMOTE+SVC 93.56± 6.48 96.44± 3.59 93.13± 6.88
SMOTE+SVC 92.42± 6.25 93.18± 8.61 87.50± 14.73

SVC 94.87± 4.12 72.96± 40.24 68.13± 40.77

yeast2vs8 23.10
E-SMOTE+SVC 90.65± 7.43 67.12± 37.20 58.26± 35.53
SMOTE+SVC 96.69± 2.60 55.05± 39.82 45.00± 36.89

SVC 97.93± 1.37 65.25± 36.84 54.78± 36.60

The best method is in bold face and the second one in italics

applied to the mean rankings for the three measures considered, rejecting the
null-hypothesis that all algorithms perform similarly for GM and MS, and ac-
cepting it for Acc. The confidence interval was C0 = (0, F(α=0.1) = 2.73), and the
corresponding F-value was 0.76 ∈ C0, 22.87 /∈ C0 and 14.33 /∈ C0 for Acc, GM
and MS respectively. Furthermore, the Holm test (using the E-SMOTE+SVC
as control method) has also been applied concluding that there are statistically
significant differences for α = 0.1 for GM and MS, when comparing the control
method to all the others.

4 Conclusions

This paper proposes the idea of performing preprocessing techniques in the em-
pirical feature space when applying kernel classifiers. We focus on the imbalanced
binary classification context, and the proposal has been tested with the standard
SVC and the SMOTE over-sampling method, achieving better Geometric Mean
and Minimum Sensitivity results than when applying the same preprocessing
in the original input space. Given that the over-sampling technique operates
in r dimensions (kernel matrix rank), instead of d (dimensionality of the input
space), what is noteworthy is its applicability to bioinformatics datasets where
the number of features tend to be much higher than the number of samples
(r << d), and where imbalanced datasets are commonly found. Additionally,
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as an advantage of the method, there is no need to treat the data attributes
differently (taking into account their nature) since all of them are real, unlike
in the original SMOTE. This proposal can be extended by considering other
different over-sampling methods or under-sampling ones and by extending the
experiments with more datasets and methods.
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