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Abstract. We discuss several approaches that make possible for kernel
methods to deal with missing values. The first two are extended kernels
able to handle missing values without data preprocessing methods. An-
other two methods are derived from a sophisticated multiple imputation
technique involving logistic regression as local model learner. The per-
formance of these approaches is compared using a binary data set that
arises typically in microbiology (the microbial source tracking problem).
Our results show that the kernel extensions demonstrate competitive per-
formance in comparison with multiple imputation in terms of predictive
accuracy. However, these results are achieved with a simpler and deter-
ministic methodology and entail a much lower computational effort.

1 Introduction

Modern modelling problems are difficult for a number of reasons, including the
challenge of dealing with a significant amount of missing information. Kernel
methods have won great popularity as a reliable machine learning tool; in par-
ticular, Support Vector Machines (SVMs) are kernel-based methods that are
used for tasks such as classification and regression, among others [1]. The kernel
function is a very flexible container under which to express knowledge about the
problem as well as to capture the meaningful relations in input space.

Some classical modelling methods –like Näıve Bayes and CART decision
trees– are able to deal with missing values directly. However, the process of op-
timizing an SVM assumes that the training data set is complete. When present,
missing values almost always represent a serious problem because they force to
preprocess the dataset and a good deal of effort is normally put in this part
of the modelling. In order to process such datasets with kernel methods, an
imputation procedure is then deeemed a necessary but demanding step.

The aim of this paper is to examine and compare a number of approaches
to handle missing values in kernel methods. Specifically, we present two meth-
ods that extend a kernel function in the presence of missing values and hence
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handle missing values directly. We also investigate two different uses of the
well-stablished multiple imputation method. These four approaches are used
to analyze a fecal source pollution dataset presenting several challenges: it is a
multi-class, small sample size problem plagued by missing values. All four have
slightly better predictive accuracies than the best model suggested so far.

2 Preliminaries

Missing information is difficult to handle, specially when the lost parts are of
significant size. Three possible ways to deal with missing data are: i) discard
all observations (or variables) with missing values, ii) impute the values, and
iii) extend the learner to work with incomplete observations. Deleting instances
and/or variables containing missing values results in loss of relevant data and is
also frustrating because of the effort in collecting the sacrificed information. Im-
putation methods entail inferring values for the missing entries [2, 3]. A growing
number of studies recommend the use of multiple imputation –e.g. [4]. Com-
pared to classical imputation, which imputes a single value, multiple imputation
produces several values to fill the missing entries. These methods are indepen-
dent of the learning algorithm and hence their impact on the learning process
is uncertain. For SVMs, recent work tackles the problem by defining a modi-
fied risk that incorporates the uncertainty due to the missingness into a convex
optimization task [5].

2.1 First kernel extension

The first kernel extension is obtained by wrapping a known kernel around a
probability distribution [6]:

Theorem 1 Let X denote a missing value. Let k be a kernel in X and P a
probability mass function in X. Then the function kX (x, y) given by

kX (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

k(x, y), if x, y �= X ;∑
y′∈X

P (y′)k(x, y′), if x �= X and y = X ;∑
x′∈X

P (x′)k(x′, y), if x = X and y �= X ;∑
x′∈X

P (x′)
∑

y′∈X

P (y′)k(x′, y′), if x = y = X

is a kernel in X ∪ {X}.

For binary variables x, y ∈ {0, 1}, define the kernel:

k(x, y) =

{
1 if x = y

0 if x �= y
(1)
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Notice that this kernel is univariate. For the multivariate case x,y ∈ X =
{0, 1}d, define the first kernel extension (1KE) as:

K1(x,y) =
1

d

d∑
i=1

kX (xi, yi) (2)

2.2 Second kernel extension

The second kernel extension (2KE) deals with the multivariate case directly
but is limited by the number of variables. The idea is to consider all possible
completions of an observation with missing values. An example will prove help-
ful: suppose we have an incomplete observation given by (0, 1,X , 0); then the
possible completions for this observation are {(0, 1, 0, 0), (0, 1, 1, 0)}.

Theorem 2 Let X denote a missing value. Let k be a kernel in X = {0, 1}d.
Let c(x) be the set of completions of x. Given two vectors x,y ∈ X, the function

K2(x,y) =
1

|c(x)||c(y)|
∑

x′∈c(x)

∑
y′∈c(y)

k(x′,y′) (3)

is a kernel in X ∪ {X}.

Proof. The set of kernels is a convex cone; therefore it is closed under linear
combinations with positive coefficients.

2.3 Multiple imputation methods

These methods involve the estimation of what the missing values could have
been and then use the completed datasets for modelling. Two main methods for
multivariate data have been proposed: joint modeling (JM) and fully conditional
specification (FCS). JM assumes a (multivariate) distribution for the missing
data, and draws imputed values from the conditional distributions by MCMC
techniques. JM techniques are available if the distribution is assumed to be
multivariate normal, log-linear or a general location model. The success of JM
depends on the impact of these assumptions. On the other hand, FCS does
not make distributional assumptions in advance, since it specifies a multivariate
imputation model on a variable-by-variable basis by a set of conditional densities,
one for each incomplete variable [7]. FCS will start with an initial imputation
and then draw imputations by iterating over the conditional densities [8].

Let us denote our observation as X = (X1, . . . , Xd), possibly with missing
values. The observed and missing parts of X are denoted by Xobs and Xmis,
respectively. Let X−j = (X1, . . . , Xj−1, Xj+1, . . . , Xd) denote the collection of
the d− 1 variables in X except Xj .

The hypothetically complete observation X is assumed to be drawn from a
d-variate distribution P (X|θ). We assume that the multivariate distribution of
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X is completely specified by θ, a vector of unknown parameters. The para-
meters θ1, . . . , θd are specific to the respective conditional densities and are not
necessarily the product of a factorization of the true joint distribution P (X|θ).

The chained equations method obtains the posterior distribution for θ by
sampling iteratively from conditional distributions of the form P (Xj |X−j , θj), j =
1, . . . , d. Starting from a simple draw from the observed marginal distributions,
the t-th iteration of the process is a Gibbs sampler to successively draw [8]:

θ
∗(t)
1 ∼ P (θ1 |Xobs

1 , X
(t−1)
2 , . . . , X

(t−1)
d )

X
∗(t)
1 ∼ P (Xmis

1 |Xobs
1 , X

(t−1)
2 , . . . , X

(t−1)
d , θ

∗(t)
1 )

...

θ
∗(t)
d ∼ P (θd |Xobs

d , X
(t)
1 , . . . , X

(t)
d−1)

X
∗(t)
d ∼ P (Xmis

d |Xobs
d , X

(t)
1 , . . . , X

(t)
d , θ

∗(t)
d )

whereX
(t)
j = (Xobs

j , X
∗(t)
j ) is the jth imputed variable at iteration t. Observe

that previous imputations X
∗(t−1)
j only enter X

∗(t)
j through its relation with

other variables, and not directly. Moreover, and unlike other MCMC methods,

no information about Xmis
j is used to draw θ

∗(t)
j , so convergence can be quite

fast. The procedure is iterated a number of m times to generate m different
multiple imputations. For the technique to be practical, a univariate imputation
model is needed for each of the incomplete variables. The choice will be steered
by the scale of the dependent variable (the variable that we need to impute),
and preferably incorporates knowledge about the relation between the variables.
Other considerations include the set of variables to include as predictors; the
order in which variables should be imputed; the number of imputed data sets;
whether we should impute variables that are functions of other (incomplete)
variables; the form of the starting imputations and the number of iterations.

3 Experimental evaluation

3.1 Problem description

The study of fecal source pollution in waterbodies is a major problem in ensuring
the welfare of human populations, given its incidence in a variety of diseases, spe-
cially in under-developed countries. Microbial source tracking methods attempt
to identify the source of contamination, allowing for improved risk analysis and
better water management [9]. The available data set includes a number of chem-
ical, microbial, and eukaryotic markers of fecal pollution in water. All variables
(except the class variable) are binary, i.e., they signal the presence or absence of
a particular marker. The data set includes 9 binary variables, 138 observations
and four classes, with 212 missing entries out of 1, 242 (approximately 17%). All
variables have percentages of missing entries greater than 15%. A recent study
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investigating this data set reported a Näıve Bayes classifier as the best model,
yielding an accuracy of 77.9% [10].

3.2 Performing multiple imputation

To our knowledge there has been little work in using multiple imputation for
missing data treatment prior to the application of a SVM as the learning algo-
rithm. The crucial element is how to pool the results coming from several SVMs
that are trained for each imputed data set. In this paper we propose two meth-
ods to do this pooling. The first method is to concatenate the multiply imputed
data sets and optimize an SVM classifier in the resulting set; this not only ac-
counts for the variability of the parameter estimates but also for the variability
of the training observations in relation to the imputed values. The second, more
standard procedure, involves fitting separate SVMs to each imputed data set
and get the average performance of the different SVMs. Since the missing values
in our problem are found in variables which are binary, logistic regression is a
good choice for the imputation models. One is also required to identify which of
the remaining variables will be used as predictors. To this end we compute the
Kendall rank correlation coefficient for each pair of variables and set a threshold
that will serve as an indicator for a variable to be included as a predictor. In
addition, we also determine the proportion of usable cases (PUC); this will tell
us whether a predictor contains only fractional information to impute the target
variable, and thus could be dropped from the model. To improve the imputa-
tion model we decided to use the class variable as a predictor whenever it is
appropriate (as indicated by the Kendall coefficient and the PUC). Finally, the
number of imputed data sets is set to 10, to keep computations manageable.

3.3 Results and discussion

Four separate predictive models were built for each of the approaches: 1KE,
2KE, the first version of multiple imputation (1MI) and the second version of
multiple imputation (2MI)1. To obtain a reliable estimate of predictive accuracy
in this small data set, a stratified 10 times 10-fold cross-validation (10x10cv) is
performed. Table 1 summarizes the results.

10x10cv for each class
Approach C 10x10cv Human Cow Poultry Swine
1KE 2.0 79.3 95.4 64.5 75.2 69.4
2KE 1.6 78.2 92.6 62.8 71.8 74.2
1MI 1.0 79.9 92.7 66.4 69.4 80.2
2MI 1.0 79.0 94.5 57.5 70.8 78.8

Table 1: Mean 10x10cv accuracies for the four approaches to handle missing
values. Also shown are best cost parameter C and detailed class performance.

1We used the R software [11], extended with the kernlab package (for the SVMs) and the
mice package, which implements the FCS method for multivariate multiple imputation.
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The table shows that all four approaches have comparable performance, with
2KE seeming inferior; 1KE performs best in identifying human contamination,
the most important single decision; the two multiple imputations are good for
swine origin. The four approaches have difficulties in classifying cows, probably
because this class is the minority class, representing only 18% of the observations.

4 Conclusions

In real problems, accuracy may not tell the whole picture about a model. Other
performance criteria include development cost, interpretability, and utility. The
cost here refers to how much pre-processing effort and computing time we need
in order to build the model. Undoubtedly, the two imputation methods require
more time and resources compared to the kernel extensions. Prior to imputation
a good univariate imputation model must be identified for each variable contain-
ing missing values. These methods depend also on several non-trivial algorithmic
options and have an added computational cost for training separate SVMs for
each of the imputed data sets. Interpretability refers to the complexity of the
obtained model. It is unclear if a model that had values imputed (several times)
is more interpretable than one that had not. Finally, the model must be useful
in practice: in a real deployment of the model, new and unseen observations
emerge which we need to classify, which may contain missing values. The two
kernel extensions are the only methods able to face this situation.
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