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Abstract. Dissimilarities are extremely useful in many real-world pattern 

classification problems, where the data resides in a complicated, complex space, 

and it can be very difficult, if not impossible, to find useful feature vector 

representations. In these cases a dissimilarity representation may be easier to come 

by. The goal of this work is to provide a new technique based on Support Vector 

Machines (SVM) optimization that can be a good alternative in terms of accuracy 

compared to known methods using dissimilarities such as k nearest neighbor 

classifier (kNN), prototype-based dissimilarity classifiers and distance kernel based 

SVM classifiers.  

1 Introduction 

Pattern recognition is traditionally based on a representation with features. Features 

should preferably be defined on the basis of expert knowledge of the application 

domain. So each object is represented by a vector in a multidimensional feature space.  

 In recent years, Pekalska, Duin and others have proposed alternative 

representations of the observations by using dissimilarities [1]. According to them, if 

we assume that the objects called "similar" can be grouped to form a class, a "class" is 

nothing more than a collection of these similar objects. Based on this idea, Duin and 

colleagues argue that the notion of proximity (similarity or dissimilarity) is actually 

more fundamental to define a class than features [1]. The advantage of dissimilarity-

based classifiers is that since they do not operate on the class-conditional 

distributions, their accuracy can exceed theoretically the Bayes’ error bound. Also 

they do not have to confront the problems associated with feature spaces such as the 

“curse of dimensionality”, and the issue of estimating a large number of parameters. 

The use of dissimilarities to represent objects opens new possibilities in statistical 

learning, for the dissimilarities can capture both the statistical and structural 

information about objects.  

 The most popular dissimilarity-based classifier is k nearest neighbor (kNN). It 

requires no prior knowledge about the distribution of the data. It is fast and simple. 

But it is not well suited to measures that do not respect the triangular inequality. 

 The support vector machines (SVMs) are widely used in statistical learning for 

classification and regression. SVM are kernel-based methods. The notion of similarity 

(and thus dissimilarity) is closely related to the use of kernels. Classical kernels are 

defined using scalar products (similarity) or Euclidean distance (dissimilarity) 
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between feature vectors in the initial feature space. They are defined in vector spaces 

such as to meet the Mercer’s conditions [3]. Some problem specific non-metric (e.g. 

violate the triangle inequality) distance measures often lead to kernels which are not 

positive definite. Such kernels are based on tangent-distance, dynamic-time-warping 

distance or Kullback-Leibler divergence [1, 2, 4]. This type of SVM with distance 

kernels can also be interpreted as optimal hyper plane classifier [2]. To our 

knowledge, there are three approaches, proposed for the use of dissimilarity data in 

SVMs. The first is Pekalska’s prototype selection method presented in [1]. The 

second method involves multidimensional scaling of the dissimilarity matrix and 

classification of the data in this space with linear SVMs [1]. The third approach is 

inspired by the use of distance kernels for specific classification problems [4]. 

 This paper focuses on the incorporation of SVM in to the dissimilarity-based 

metric “Shape Coefficient” (Cs), described in details in [5]. The Cs is defined from 

simple statistics (mean and variance) on the dissimilarity data. The proposed decision 

rule is based on the Cs description and on the optimal separating hyper plane with 

Support Vector Machines (SVM). This provides a decision rule with a limited number 

of parameters per class.  

 The article is organized as follows: in Section 2 we describe the theoretical basis 

of this approach; in Section 3 we provide experimental results on real-life data sets. 

Finally, Section 4 concludes the article. 

2 Description of the “Shape Coefficient” metric and the decision 

rule based on SVM optimization procedure 

2.1 The “Shape coefficient” metric 

In this work, we used the dissimilarity representation space inspired by Pekalska’s 

work and we define after recoding the dissimilarity data, a model which was 

parameterized using a low-dimensional parameter space.  

Let us consider a two-class classification problem where ω1 is the first class and 

ω2 the second class. Let N be the number of objects oi in a set to be classified, D is the 

dissimilarity (N×N) matrix between each object such as: ],1:)([ , NjioodD ji  . 

The logic of the construction of the Cs follows the reasoning of the discriminant 

analysis -maximizing the inter-class inertia and minimizing the intra-class inertia to 

best separate the class. Following [5], the metric Cs describes the proximity of an 

object to a given class (for example for ω1): 
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1iod   is the empirical average of the dissimilarity between object oi and 

all the observations in class ω1,  },var{ 2

1iod   is the empirical variance, and )I( 1  

is the class inertia computed as the empirical mean of all the squared dissimilarities 

between objects in class ω1. The numerator deals with the “position” of the 

observation oi relatively the class center. The denominator interpretation is more 

complex, taking into account the “structure” (orientation, shape, intrinsic 
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dimension…) of the observations distribution in the class. In order to adapt the Cs to 

different types of class distributions, the learning parameters δ1 and γ1 are added to 

best fit this data structure. The equation for Cs(oi ,ω2) with the class ω2 is equivalent 

to (1) and has two fitting parameters γ2 and δ2. The decision rule for a two-class 

classification problem for an object oi is given then by the following relation: 
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This relation is defined by 4 learning parameters for a two-class problem. From (2), 

we have defined in [5] learning procedures which overcame or have had similar 

performance compared to the kNN rule. In the next subsection we present a more 

straightforward learning procedure based on SVM optimization with only three 

independent parameters: 1, 2, 1/2. 

2.2 Decision rules using SVM procedure  

The idea is to propose a new representation of the observations which must be 

compatible with a linear decision rule in this new features space. The quantities Cs(oi 

,ω1) and Cs(oi ,ω2) being positive, we can transform (2) using the logarithmic function 

as follows: 
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In fact this (3) can be interpreted as such a rule in a four dimensional vector space. It 

represents a separating hyper plane separating the two classes when we replace the 

inequality with equality. Following (3) we can represent each object oi using a four 

dimensional feature vector xi (  Ti4i3i2i1i xxxxx ) by adopting the recoding of the 

variables in (3): 
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By adopting the usual vector notation, equation (3) becomes: 00
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where β = [1 1 δ1 δ2]
T
, is the normal to the optimal separating hyper plane and 

)log(
210
γγβ   is the bias from the hyper plane to the origin. Labeling the objects 

with the auxiliary variables per class, such as yi = -1 for oi ω1 and yi = 1 for oi ω2, 

we have the classical linear decision rule:
 

)( 0βsigny i

T

i  xβ


. This is the standard 

decision rule for classical SVM. Here, the difference with the classical solution 

concerns the vector β normal to the optimal hyper plane: in this case it is constraint to 

have the same two first components: β1= β2. 

 We chose to use the SVM optimization problem, since the theory of the 

proposed metric does not assume special properties of the class distributions. We have 

to modify it for learning in the context of this partial knowledge of the normal to the 
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separating hyper plane. To do this, we group the feature vectors xi into two orthogonal 

subspaces: 
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And by using the dual optimization problem, (3) can be interpreted as a function to 

minimize with 4 unknown parameters: β , 43 ββ ,  and β0. This problem consists in 

finding the optimal hyper plane when the 2 classes are non separable and it is solved 

by using the Lagrange multipliers [3]. In our case, and using the reasoning presented 

in the above paragraph the optimization problem can be rewritten as follows: 
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where ξi are the slack variables, associated with all the objects, for misclassified 

object  ξi >1. The parameter C corresponds to the penalty for errors and it is chosen by 

the user. Using the solution with Lagrange multipliers and the Karush-Kuhn-Tucker 

conditions for the primal problem this gives the dual Lagrangian to minimize, where 

αi are the Lagrange multipliers:  
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Therefore, we end up with the same dual Lagrangian (6) as the SVM with the 

difference of the term ui∙uj added to the scalar product  ji xx ;  for each pair of 

observations.  

 The classifier presented above aims to find the optimal separating hyper plane 

knowing that the β vector normal to the optimal hyper plane is forced to have two 

identical components: β1= β2 and the feature space of this hyper plane is limited to 

four dimensions regardless of the underlying intrinsic dimensions of the observations, 

and the number of observations. 

3 Experimental results on real-life dissimilarity datasets 

The dissimilarity databases used in this research are public and available in the 

Internet. They are described in Table 1 and analyzed following the same methodology 

as in [2, 6]. To characterize the databases, we calculate a negative eigenratio (NER) 

[6]. It is the ratio of the largest negative to the largest positive eigenvalue of the 

dissimilarity matrix. NER is a measure of non-Euclidean behavior of the dissimilarity. 

If the distance measure is almost Euclidean the NER is small (<0.1). These different 

datasets represent a wide spectrum from easily to difficultly separable data. None of 
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the dissimilarity measures are isometric to an L
2
-norm. The estimate of the 

recognition rate for these databases is achieved using "Leave One Out" (LOO), due to 

the rather small size of the databases and for the multi-class SVM we use the “one vs. 

all” procedure. The method Cs-SVM, was developed in C, by introducing some 

modifications to the open source software SVM
Light

 6.02, in order to implement our 

dual Lagrange formulation incorporating a priori knowledge on the  vector.  

 

Name Number of 

classes/[Number 

of objects] 

Dissimilarity measure NER 

 Kimia 1/Kimia2  

Music-EMD1/2  

Music-PTD1/2  

 

UNIPEN-DWT  

USPS-TD1,2,3,4 

 

 

6/[12 per class] 

4/ [22 28 27 30]  

4 /[22 28 27 30]  

 

5/[50 per class]  

2/ [146 104], 

[133 117], [169 

81], [160 90]  

Hausdoff distance  

Earth Mover's Distance 

Proportional Transportation 

Distance 

Dynamic Time Warping  

 

Tangent distance  

 

0.05/0.1 

0.41/0.48 

0.31/0.28 

 

0.2 

 

0.07 

 

Table 1: Collection of dissimilarity databases used in this study 

In Table 2 are presented the best results in LOO classification error for all the 

datasets, the values of the penalty error C and the parameter for the Gaussian radial 

basis kernel k
rbf

 are logarithmically varying along a suitable grid according to [2]. 

The recognition error rates for the pure distance substitution linear kernel (k
lin

) and 

k
rbf

 kernel are taken directly from [2], thus these classifiers have not been re-

implemented and we used their best estimates. We have chosen to compare Cs-

SVM with the k
rbf 

kernel because it exhibits the best recognition error behavior 

according to [2]. 

 

Name kNN k
lin

 SVM  k
rbf

 SVM Cs-SVM 

Kimia 1/Kimia2  

Music-EMD1/2  

Music-PTD1/2  

UNIPEN-DWT  

USPS-TD1, 2 

USPS-TD3, 4 

6.94/16.67 

26/29.82 

36/38.60 

6/7.60 

4.40/5.20 

4.40/2.80 

15.28/12.50 

40.00/42.11 

34.00/31.58 

14.40/10.80 

10.40/14.40 

12.80/10.80 

4.17/9.72 

20.00/10.53 

32.00/28.07 

5.20/6.00 

3.20/2.40 

4.00/3.20 

6.49/16.67 

2.00/8.77 

4.00/10.53 

4.40/5.60 

3.20/2.80 

1.20/1.20 

Table 2: LOO recognition error [%] of the classification experiments 

These experiments demonstrate the effectiveness of the proposed classifier compared 

to some of the existing dissimilarity-based classifiers. Cs-SVM is successful in most 

cases even when NER is high. Example of the comparison with SVM k
rbf

 is shown on 

fig. 1 where the axes represent the classification errors for the k
rbf

 classifier and 

respectively Cs-SVM for each database. For every point below the median, Cs-SVM 

performs better than the k
rbf

. 
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Fig. 1: LOO error rates from Table 2 for different datasets for k
rbf

 and Cs-SVM.  

4 Conclusions and further research 

The classifier proposed in this work improves the error recognition results for most 

datasets compared to the pure distance substitution k
lin

 and k
rbf

 kernel SVM. Cs-SVM 

is rather simple and requires little setup because its performance does not depend on 

the choice of an appropriate distance kernel. It is very robust for different types of 

dissimilarities. Results on real datasets show that Cs-SVM is a good alternative to 

other dissimilarity-based classifiers because of its: (a) parsimony (only based on first 

and second order statistics on dissimilarity values), (b) datadriven flexibility (two 

fitting parameters to learn the “shape” and the “intrinsic dimension” of each class) 

and (c) stable behavior when facing incomplete dissimilarity data.  

 For our future research we would like to explore the possibility to use the 

primal optimization problem that can also be solved efficiently for non-linear SVM 

but compared to the dual problem the first can be rewritten as an unconstrained 

problem.   
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