ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Linear Spectral Hashing
Zalén Bodé and Lehel Csaté *

Babeg—Bolyai University - Faculty of Mathematics and Computer Science
Kogalniceanu 1., 400084 Cluj-Napoca - Romania

Abstract. Spectral hashing assigns binary hash keys to data points.
This is accomplished via thresholding the eigenvectors of the graph Lapla-
cian and obtaining binary codewords. While calculation for inputs in the
training set is straightforward, an intriguing and difficult problem is how
to compute the hash codewords for unseen data. A second problem we ad-
dress is the computational difficulties when using the Gaussian similarity
measure in spectral hashing: for specific problems — mainly the processing
of large text databases — we propose linear scalar products as similarity
measures and analyze the performance of the algorithm. We implement
the linear algorithm and provide an inductive — generative — formula that
leads to a prediction method similar to locality-sensitive hashing for a new
data point. Experiments on document retrieval show promising results.

1 Introduction

In recent years several algorithms were proposed for fast approximate nearest
neighbor search, providing sub-linear search times for a query. One of the most
popular such methods is locality-sensitive hashing [2] (LSH), that partitions the
dataset into clusters where similar data points are grouped together, and the
grouping is made without comparing data points. Partitioning is accomplished
by generating random hyperplanes, i.e. random vectors in the input or in a
feature space [3]. The hash function is the sign of the dot product between
the data point and the random vectors. Using carefully chosen random vectors,
similar data point will likely be in nearby buckets, where proximity is defined
via Hamming distance.

One can label a hashing algorithm as unsupervised, semi-supervised or su-
pervised approach [1]. Whilst supervised methods are the most promising, for
large datasets these are unfeasible as the labeling by humans would be too costly.
Therefore we use unsupervised methods, namely the spectral hashing algorithm
[9] that is able to learn relatively short codewords. In this paper we build a
linear algorithm derived from spectral hashing with simple, LSH-like prediction
and validate the results for a document retrieval problem.

The structure of the paper is as follows: Section 2 presents the spectral clus-
tering in general. It describes the presentation of normalized spectral clustering
as a maximum-margin hyperplane separation. After a brief description of spec-
tral hashing in Section 3, the maximum-margin formulation is used in Section
4 to derive a new algorithm for computing the codewords for unseen points.
Section 5 describes the experiments with text corpora, and discusses the results.

*The authors acknowledge the support of the Romanian Ministry of Education and Research
via grant PN-II-RU-TE-2011-3-0278.

303

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

2 Spectral clustering and max-margin hyperplanes

In spectral clustering [8] — one of the most successful clustering algorithms —
partitioning is done using the minimum cut in the neighborhood graph, where
minimum cut is defined as removing edges such that the graph is partitioned
into two — or more — disconnected subgraphs with minimal sum of edges.

The sum of edges alone as objective function favors unbalanced and small
clusters. To overcome this problem, normalized cut is used. Since labeling
implies negative or positive units, z; € B = {—1, +1}, the label assigning problem
is combinatorial. To avoid the combinatorial explosion, the original problem is
relaxed to the following optimization on a continuous domain [7, 5]:

/D—1/2WD—1/2
z" = argmax z y z st. 2ZDY?1=0 (1)
zERN Z'Z

where z is the vector of — continuous — labels, W is a similarity matrix, and
D = diag(W1) is the diagonal degree matrix. Similarity can be defined using
any positive definite kernel, and often it is defined using the Gaussian one:
Wi; = ka(xi,%xj) = exp (— 52z ||x; — x;[|?). Equation (1) is maximized by the
eigenvector with the second largest (< 1) eigenvalue of the so-called normalized
graph Laplacian Lgym, = D~/2(D — W)D~'/2, Having the solution, the cluster
indicator is the thresholded vector of z*.

An equivalent view of the optimization from eq. (1) is that of separating the
points by a maximum-margin hyperplane in the feature space defined by the
same proximity matrix W [5], that we detail in the following.

Let us consider the matrix ® = [¢(x1), ¢(x2), ..., ¢(xn)] as the projection
of the training dataset in a feature space defined by the mapping ¢ : X — H.
We are looking for a separating hyperplane in that feature space, defined by
the normal w € H. To ensure that the clusters induced by the hyperplane are
approximately the same size, the constraint Zfil w/p(x;) = 0 is introduced;
and we also restrict |[w| = 1. Then we rewrite the optimization problem as

. weD 1®'w N ,
w arv%gjx m—— s.t. ;w o(x;) =0 (2)
where w’ denotes the transpose of w.

Similarly to spectral clustering, the solution of the above optimization is the
eigenvector of the second largest eigenvalue of the matrix ®D~'®’. As this is
a feature space entity, its dimensionality is often infinite, therefore we aim at
expressing the result using a smaller dimensional entity. We can use the spectral
decomposition of the matrices AA’ = D~1/2@&'®D~1/2 = D-/2WD~1/2 and
A’A = ®D '@’ and establish that if v, is the second eigenvector of AA’, then
u, = @D_1/2V26;1/2 is the second eigenvector of A’A, with ey the second
largest eigenvalue.

The result is important: we obtain an inductive clusterizer, a hyperplane in
the feature space H with normal w* = uy = @D_1/2er;1/2. It is important

304

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

the inductive nature of the algorithm: no eigenvector computations are needed,
but the cluster label of the data point x is calculated by

fZ(X) = ¢(X)/u2 = (ZS(X)I(PD_l/sze;l/Z (3)

where fa(x) refers to the fact that the scalar product with the second largest
eigenvalue is computed. Furthermore, the separator from above assigns the same
cluster labels to the points as the normalized spectral clustering, since

sgn (®'w*) = sgn («1>'<I»D—1/2vze;1/2) — sgn (D‘1/2<I>’<I>D_1/2erQ_1/2>
_ (1/2)
= sgn(vae;

which is the same as sgn(vs), completing the proof.

Furthermore, the above formula can be applied to every eigenvector. Omit-
ting the eigenvalue from the formula does not change our clusterizer, since
D'/2WD~1/2 is positive semi-definite. We use this result in spectral hash-
ing for computing the hash codeword for an unseen point.

3 Spectral hashing

Spectral hashing [9] is a novel method for hashing-based nearest neighbor search.
It is based on minimizing the weighted distances between binary codewords, and
the weighting is based on the similarity between data points. As in LSH, this
binary sequence clusters the points, but in contrast to the classical LSH output,
the length of the sequence can be significantly smaller.

We want thus to find a mapping that assigns codewords to data points such
that these codewords are close to each other for nearby data points, where we
can consider the similarity matrix W from Section 2. If y;, ¢ = 1,..., N denotes
the codewords for the training points, and the vectors y; are organized into the
rows of the matrix Y, then the following optimization problem has to be solved:

N

N N

* . 1

Y* = argmin E Wislly: — y;l? s.t. E yi=0, — E vy, =1 (4)
YeBNXr i1 i=1 NI

where the first condition is for maintaining the balance between the bits — bits
are distributed evenly over {—1,1} — and the last condition makes the bits un-
correlated. Since the optimization problem above is NP-hard [9], analogously to
spectral clustering, using the graph Laplacian L, it is relaxed into

Y* = argmin tr(Y'LY) st. Y1=0, YY=I (5)

YERN T
Excluding the first constraint, the solution of the problem is given by the first
r eigenvectors of L, Y* = [v1, va,..., v,] [4]. Thus yi’' = [v1i, vai, .., Ui
The first constraint is satisfied by all the eigenvectors, except the first one, the
constant one eigenvector with eigenvalue 0, because Y*'1 = 0 is equivalent to

305

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

requiring the dot product of each eigenvector with the constant one vector to

equal zero. Therefore, the final solution is given by Y* = [va, v3, ..., V,41]
where vy denotes the eigenvector corresponding to the second smallest positive
eigenvalue.

In [9], using the Gaussian kernel, generalization was done using the eigenfunc-
tions of the weighted Laplace—Beltrami operators, assuming a multidimensional
uniform distribution. In this paper we use the results from Section 2, providing
a more simple and elegant approach for the linear case.

4 Linear spectral hashing

The crucial problem is to generalize spectral hashing for unseen points. That
could be solved by including the point in the dataset and recalculating the first
r eigenvectors. It is however obvious that this is not admissible, since turns the
problem into a more complex one than the initial search was.

In this section we connect spectral hashing with spectral clustering and use
the generalization results from Section 2. For this, in problem (5) we simply
change the Laplacian to the normalized Laplacian D~'/2LD~!/2, thus the so-
lution is now given by the first r eigenvectors of the normalized Laplacian with
strictly positive eigenvalues. Subsequently, we can use eq. (3) to compute the
cluster labels of a point x by substituting the first eigenvectors — starting from
the second largest eigenvalue — into uy or vg:

Fx) = [f2(2), fs(x), -, fraa(®)

and we assumed that the new x comes from the same distribution as the training
points, thus using (3) we approximate the assigned labels.

However, computing ¢(x)'® requires N kernel computations, which is the
same as comparing the new point x to every training example, as in the original
nearest neighbor search. Thus, instead of simplification we actually increased the
number of comparisons, i.e. similarity or distance computations. Nevertheless,
if we use dot products, that is we handle the points in the input space, we can
compute the r vectors g := uy or g = XD Y2v,, k = 2,...,r+ 1, and
when a new point x arrives calculate the dot products x’g; and threshold the
resulting values to obtain the binary codeword. Thus, the computation of a
new codeword requires only r dot products of input space vectors. Whether
to calculate ug or vy depends on the size and dimensionality of the dataset.
For large, but relatively low-dimensional data — which we assume is the case —
the eigendecomposition of XD~ !X’ is performed. The codewords assigned to
training points are composed by the first r eigenvectors with strictly positive
eigenvalues of the normalized Laplacian, computed similarly.

Our method has the limitation that the similarity matrix W = XX’ must
be positive, but in turn it offers a simple and fast codeword generation process
for unseen points.

306

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Reuters-21578 20Newsgroups
[l Spectral hashing [l Spectral hashing
0.3[| M Linear spectral hashing 0.25[| [l Linear spectral hashing
[} [
% 0.25 % 02
T 02 i
= — 0.15
(7] [
g 0.15] 'g
0.1
g 01 g
< <
0.05, 0.05
0
8 16 32 64 128 256 8 16 32 64 128 256
Codeword length Codeword length

(a) (b)

Reuters-21578 20Newsgroups

1 1 >
N N *
v v e
[Q 4
208 So08 R
i) i) .
@ @ s
©
0.6 206 .
£ £ !
£ E N
504 Soa
< T .
c o L}
k=] K] ’
2 0.2 =@= Spectral hashing 2 0.2 N =@= Spectral hashing
g 1 = ® = | inear spectral hashing g . = ® = | inear spectral hashing
0
8 16 32 64 128 256 816 32 64 128 256
Codeword length Codeword length

(c) (d)

Fig. 1: (a) and (b) — area under the recall-precision curve as a function of the
codeword length. (c) and (d) — precision results for Hamming distance < 2.

5 Experimental results and discussion

The experiments were run on two corpora frequently used for evaluating text
categorization systems, since linear methods perform well on bag-of-words docu-
ment vectors. The superiority of spectral hashing to other methods has already
been shown [9], therefore we only compare our algorithm to spectral hashing.

In the experiments we used the Reuters-21578 and 20Newsgroups' datasets.
For both corpora, a stopword list with 199 elements? was used to get rid of the
probably irrelevant words, after which the remaining most frequent 5000 words
were selected as the dimensions of the representational space. In the final step
the tf-idf transformation [6] was applied and the documents were normalized to
unit length. No stemming was applied for the selected features.

For evaluating the performance of the studied methods we did not use the
labels of the documents, but for each test document we determined its 50 nearest
neighbors from the training set, and measured to which extent the neighbors were

IThe datasets can be downloaded from http://disi.unitn.it/moschitti/corpora.htm
and http://qwone.com/~jason/20Newsgroups/20news-bydate.tar.gz.

2The stoplist was taken from WordNet::Similarity 2.05, http://wn-similarity.
sourceforge.net.

307

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

found by the algorithms. The evaluation measures used were precision and recall
[6].

In Figure 1.(a,b) the areas under recall-precision curves are shown for spec-
tral hashing and linear spectral hashing for the Reuters-21578 and 20Newsgroups
dataset by varying the codeword bits from 8 to 256, every time doubling the
length.? Precision and recall was calculated as the function of the Hamming
neighborhood, and the number of evaluations was determined by the length of
the codeword. For example, for 64 bits the precisions and recalls were calcu-
lated for Hamming distances of {0,1,2,...,64}. Figure 1.(c,d) shows the results
obtained with spectral hashing and linear spectral hashing respectively, where
the precision was plotted for Hamming distance < 2, increasing the number of
codeword bits from 8 to 256.

We presented a method based on spectral hashing but using a different gen-
eralization for unseen points. This method outputs r input space vectors, which
are used to compute the binary hash sequence of an unseen point by calculat-
ing dot products as in LSH. The proposed method can be used for large and
relatively low-dimensional datasets, where dot products offer a good similarity
measure. Experiments on bag-of-words data show that the proposed method out-
performs spectral hashing in the [16 .. 128] interval. We consider this a promising
result, since using hash sequence lengths above 128 may be impractical in many
situations. Applying arbitrary kernels — for example by using low-dimensional
approximations — remains the objective of a future research.

References
[1] Kristen Grauman and Rob Fergus. Learning binary hash codes for large-scale image search.
Machine Learning for Computer Vision, 411:49-87, 2013.

[2] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In STOC, pages 604-613, 1998.

[3] Brian Kulis and Kristen Grauman. Kernelized locality-sensitive hashing for scalable image
search. In ICCV, pages 2130-2137. IEEE, 2009.

[4] Helmut Liitkepohl. Handbook of matrices. John Wiley & Sons Ltd., Chichester, 1996.

[5] Ali Rahimi and Ben Recht. Clustering with normalized cuts is clustering with a hyperplane.
In Statistical Learning in Computer Vision, 2004.

[6] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM Computing
Surveys, 34(1):1-47, March 2002.

[7] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. In CVPR, pages
731-737. IEEE Computer Society, 1997.

[8] Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395—
416, 2007.

[9] Yair Weiss, Antonio B. Torralba, and Robert Fergus. Spectral hashing. In NIPS, pages
1753-1760. MIT Press, 2008.

3For spectral hashing we used the MATLAB code from http://www.cs.huji.ac.il/
~yweiss/SpectralHashing.

308

