
GA-KDE-Bayes: An Evolutionary Wrapper
Method Based on Non-Parametric Density

Estimation Applied to Bioinformatics Problems

Maria Fernanda Wanderley1 and Vincent Gardeux2 and
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Abstract. This paper presents an evolutionary wrapper method for
feature selection that uses a non-parametric density estimation method
and a Bayesian Classifier. Non-parametric methods are a good alternative
for scarce and sparse data, as in Bioinformatics problems, since they do
not make any assumptions about its structure and all the information
come from data itself. Results show that local modeling provides small
and relevant subsets of features when comparing to results available on
literature.

1 Introduction

Density estimation with parametric models are based on the principle that data
has fixed structure and that global model parameters can be induced from sam-
pled data. However, when data is scarce and sparse, such a global assumption
may lead to biased estimators that are not capable of inducing a reliable general
model. An alternative to overcome this conflict between the global target and
the lack of information, is to use non-parametric estimators, which do not rely
on a preestablished structure and that are based on localized models in order to
construct a more general representation of the underlying problem.

Generative models for classification and feature selection depend on the va-
lidity of the induction principle adopted and on the representativeness of the
sampled data. This seems to be a dilemma in most function induction prob-
lems, since usually a general function is aimed, but in most real problems the
dataset is not large enough to guarantee global convergence conditions. Adopting
localized non-parametric models does not overcome the dilemma, but provides
a more realistic assumption under the adverse conditions.

Wrapper methods for feature selection require a dataset model in order to
accomplish the selection task, therefore the robustness of the selected features
depend on the chosen wrapper model. In this scenario, Bioinformatics problems
are particularly challenging, since the number of confirmed cases to provide a
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representative dataset is usually not large enough to guarantee global conver-
gence. In order to compensate the lack of inductive samples, more sophisticated
models to control structural and effective model capacities need to be developed.

In this paper we present an evolutionary wrapper method for feature selection
that is based on Kernel Density Estimation(KDE) [1], which is non-parametric
estimator, and on Bayes Classification [2]. The method is consistent with the ca-
pacity control principle since its smoothness is selected according to the dataset
performance. Results indicate that the evolutionary method provide representa-
tive small subsets of features which performs better than discriminant functions.

2 Proposed Method

2.1 Kernel Density Estimation(KDE)

A kernel estimator of kernel K is defined by the following expression [3]:

f̂(x) =
1

nh

n∑
i=1

K(
x−Xi

h
) (1)

where h is the window width, X1, X2, . . . , Xn are independent and identically
distributed (iid) samples from a random variable and K is a kernel function that
needs to satisfy the condition from Eq. 2, being the gaussian function the most
frequently used.

∫ ∞

−∞
K(x)dx = 1 (2)

The decision of the window width h takes an important role on the den-
sity estimation, since this parameter defines the smoothness of the estimated
density function. In this work we used the value of h presented on [3], which
proposes to balance the trade-off between bias and variance of the asymptotic
mean integrated squared error of the estimation, given by:

h = 1.06 ∗ σ ∗ n− 1
5 . (3)

2.2 Multidimensional Kernel Density Estimation

Let X = (x1, . . . , xd)
T be a vector of random variables of d dimensions. The

objective is to estimate the joint PDF of random variables x1, . . . , xd: f(x) =
f(x1, . . . , xd). The multidimensional kernel estimator can be seen as an expan-
sion from the univariate case (subsection 2.1):

f̂h(x) =
1

n

n∑
i=1

1

h1 ∗ . . . ∗ hd
K

(
x1 − xi1

h1
, . . . ,

xd − xid

hd

)
. (4)

In this case, the kernel K is a multidimensional function which also need to
satisfy the property from Eq.2 and, given that the value of h is always the same,
it is assumed that the data is equally distributed in all dimensions [3].
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An alternative for a multivariable kernel function is the multiplicative kernel
[3]. Here, a univariable kernel function is used for each one of the dimensions
with its own width h. Re-writing the equation 4 using the multiplicative kernel
we have:

f̂h(x) =
1

n

n∑
i=1

⎧⎨
⎩

d∏
j=1

1

hj
K

(
xj − xij

hj

)⎫⎬
⎭ (5)

2.3 KDE-Bayes

The idea behind this method is to perform a local modeling of data by using a
non-parametric estimator and then separate the classes with a bayesian classifier.
Kernel estimators provide local inferences by using each input data to accomplish
the estimation and, from this information, obtain some knowledge about the
global relationships.

KDE-Bayes [4] is accomplished by non-parametric density estimation of like-
lihoods followed by data classification with a bayesian rule. The decision rule
of a binary bayesian classifier [2] indicates that the feature vector x belongs to
class Ci according to the posterior probability, P (Ci|x). For a two class problem,
such rule can be described by:

Class(x) =

{
C1 if P (x|C1)P (C1) > P (x|C2)P (C2),
C2 otherwise,

(6)

where P (x|C1) and P (x|C2) are the likelihood for the classes with respect to the
vector x and P (C1) e P (C2) are the a priori probabilities of each class.

2.4 GA-KDE-Bayes: Selecting subsets of features

Given the high dimensionality of the problems presented in this work, methods
that search all combinations within the search space can not be applied. To
address this issue we have chosen an evolutionary method, in order to search the
space more efficiently and to select proper subsets of features.

For this work, initially a population of subsets of features, encoded as dec-
imal numbers, is randomly generated. Within generations the following steps
occurs: at first, individuals are selected according to a fitness function, by using
a roulette-wheel, then, given a probability, the individuals suffer a mutation,
that can increase or decrease, by one, the number of features on it. Either if
the individual is going to have its size increased or decreased, which is defined
by a probability, the feature that is going to be removed is chosen randomly. In
the end of an iteration a new population is created and the algorithm continues
until the stop condition [5].

To measure the fitness of a subset of features we used two metrics, sensitivity
and specificity, given by the performance of the KDE-Bayes for the individual
being evaluated. In order to have a balance of both of them we used as fitness
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function f the geometric mean of the metrics of the classifier, sensitivity and
specificity,

f =
√
se ∗ sp.

The value of f becomes large when both metrics are large and when the dif-
ference between them is small [6]. As so, the best individuals are those which
have balanced metrics, while individuals that are biased for one class or another
receive a small fitness function value.

Differently of a classical genetic algorithm, here the crossover was not used,
since the order of the features within an individual doesn’t change the fitness
value. Another important operator used was the elitism, which keeps the best
(of some of them) individual for the next generation, preventing that its loss
during the process of mutation.

3 Results

3.1 Oncology Datasets

In order to assess the performance of the method proposed in this work, six pub-
licly available datasets in oncology were chosen: Colon (http://genomics-pubs.
princeton.edu/oncology/affydata/index.html), Lymphoma (http://www.
gems-system.org/), Leukemia, Brain (the previous two from
http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi), Prostate
(http://www.gems-system.org/), and Ovarian
(http://data.cgt.duke.edu/clinicalcancerresearch.php). Those datasets
have between 2000 and 22283 features and less than 103 samples. As so, they
are good candidates for feature selection.

We compared the results from GA-KDE-Bayes with two other selection meth-
ods: δ-test, a filter method based on the optimization of a bi-objective function
that aims to maximize the interclass distance and minimize the number of fea-
tures, and ABEUS, a wrapper based on the optimization of the performance of
a classifier [7]. The GA-KDE-Bayes parameters were: 150 individuals, 100 gen-
erations, 0.7 as probability of mutation and 1 individual is kept by the elitism.
The mutation probability used is higher than usual because we wanted to have
a high number of size changes at the individual.

On Table 1, we show the results for each dataset. In general, GA-KDE-Bayes
selects a smaller number of features and have similar or better performance when
comparing with δ-test and ABEUS methods.

3.2 Neoadjuvant Chemotherapy on Breast Cancer Patients

After assessing the performance of GA-KDE-Bayes on oncology datasets, we used
gene expression data from breast cancer patients that had been treated with
neoadjuvant chemotherapy. This database is composed by 133 patients from
a clinical trial made at Nellie B. Connaly Breast Center from M.D. Anderson
Cancer Center, from Texas University [8]. The patients are divided on those
with complete response to the chemotherapy (PCR) and those who had not
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Table 1: Three-fold cross-validation of the GA-KDE-Bayes, δ-KDE-Bayes e
ABEUS-KDE-Bayes. Ac = accuracy, Se = sensitivity, Sp = Specificity, PPV,
NPV: positive and negative predictive values.

data colon lymphoma leukemia prostate brain ovaries
GA-KDE-Bayes

#features 6.9 ±0.11 6.5 ±0.04 8.8 ±0.17 6.5 ± 0.05 5.9 ±0.05 8.8 ±0.14
Ac 0.80 ±0.0 0.83 ±0.0 0.86 ±0.0 0.80 ±0.0 0.65 ±0.01 0.74 ±0.01
Se 0.83 ±0.0 0.72 ±0.01 0.80 ±0.01 0.80 ±0.0 0.63 ±0.02 0.73 ±0.01
Sp 0.76 ±0.01 0.87 ±0.0 0.90 ±0.0 0.81 ±0.01 0.65 ±0.02 0.75 ±0.01

PPV 0.86 ±0.0 0.64 ±0.0 0.80 ±0.01 0.84 ±0.0 0.48 ±0.01 0.65 ±0.01
NPV 0.705 ±0.01 0.90 ±0.0 0.90 ±0.00 0.76 ±0.01 0.78 ±0.01 0.79 ±0.01

δ-KDE-Bayes
#features 13.1 ± 6.72 4.2 ± 1.71 3.8 ± 1.77 7.0 ± 4.47 17.8 ± 5.55 10.0 ± 3.6

Ac 0.81 ± 0.08 0.86 ± 0.1 0.95 ± 0.0 0.90 ± 0.0 0.66 ± 0.1 0.67 ± 0.1
Se 0.88 ± 0.1 0.80 ± 0.2 0.89 ± 0.1 0.90 ± 0.1 0.47 ± 0.24 0.6 ± 0.2
Sp 0.68 ± 0.2 0.88 ± 0.1 0.98 ± 0.0 0.91 ± 0.1 0.76 ± 0.2 0.71 ± 0.2

PPV 0.84 ± 0.1 0.70 ± 0.1 0.97 ± 0.1 0.91 ± 0.1 0.62 ± 0.2 0.68 ± 0.2
NPV 0.77 ± 0.2 0.94 ± 0.1 0.95 ± 0.1 0.91 ± 0.1 0.73 ± 0.1 0.72 ± 0.1

ABEUS-KDE-Bayes
#features 6.8 ± 4.2 4.1 ± 1.2 3.2 ± 0.8 12.5 ± 9.44 14.8 ± 6.3 4.6 ± 1

Ac 0.78 ± 0.1 0.86 ± 0.1 0.89 ± 0.1 0.85 ± 0.1 0.61 ± 0.1 0.62 ± 0.1
Se 0.84 ± 0.1 0.81 ± 0.2 0.86 ± 0.1 0.83 ± 0.1 0.40 ± 0.1 0.59 ± 0.2
Sp 0.65 ± 0.2 0.88 ± 0.1 0.91 ± 0.1 0.87 ± 0.1 0.73 ± 0.1 0.64 ± 0.2

PPV 0.83 ± 0.1 0.71 ± 0.2 0.84 ± 0.1 0.86 ± 0.1 0.47 ± 0.2 0.59 ± 0.1
NPV 0.71 ± 0.13 0.94 ± 0.0 0.93 ± 0.05 0.85 ± 0.1 0.69 ± 0.1 0.66 ± 0.1

(NoPCR). We splited the data in training set, composed by 82 cases (61 PCR
cases and 21 NoPCR cases) and test set, composed by 51 patients (38 PCR cases
and 13 NoPCR cases).

On Table 2 we compare the results from GA-KDE-Bayes, DLDA-30 [8] and
clinical predictors. Even with less than a third of the features used by DLDA-
30, GA-KDE-Bayes performs around 10% better than the former one. When
comparing to the Clinical Predictors GA-KDE-Bayes also performs better but
using three times more features.

Table 2: Performances of the predictors on the independent test dataset: Villejuif
(51 cases). Clinical Predictors are based on age, estrogen receptor status and
nuclear grade.PPV, NPV: positive and negative predictive values.

GA-KDE-Bayes DLDA-30 Clinical Predictors
#features 9 30 3
Accuracy 0.86 0.76 0.78
Sensitivity 0.92 0.92 0.61
Specificity 0.84 0.71 0.84

PPV 0.67 0.52 0.57
NPV 0.97 0.96 0.86
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4 Conclusion

This paper presented a wrapper feature selection method based on KDE and
Bayes classification. Features were selected according to an evolutionary method
with fitness function based on geometric mean which reward individuals that
have both sensitivity and specificity metrics balanced. As can be seen on the re-
sults on Table 2 the method presented better performance than others presented
on the literature.

The results suggest that bottom-up non-parametric methods can be particu-
larly important in application domains such as Bioinformatics, that usually have
high dimensional scarce datasets.
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