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Abstract. The contribution describes our application to the
ESANN'2013 Competition on Human Activity Recognition (HAR) using
Android-OS smartphone sensor signals. We applied a kernel variant of
learning vector quantization with metric adaptation using only one proto-
type vector per class. This sparse model obtains very good accuracies and
additionally provides class correlation information. Further, the model
allows an optimized class visualization.

1 Introduction

The present paper describes the general techniques applied to solve the
ESANN'2013 competition to detect human activity and motion disorders based
on Android-OS smartphone sensor signals1. For this purpose six di�erent human
activities were selected by the organizers to recognize: standing, sitting, laying,
walking, walking upstairs and walking downstairs. The respective vectorial in-
formation were retrieved from smartphone inertial sensors such as accelerometers
and gyroscope. The background of the competition lies in potential applications
for assisted living technologies.

Classi�cation of vectorial data is a challenging task for many real life prob-
lems. Although the goal is quite obvious, the realization frequently is not simple
but requires sophisticated methods for satisfying solutions. One of the most
prominent and successful methods for classi�cation is the support vector ma-
chine (SVM) [6, 14, 16]. SVMs uses the implicit kernel mapping of the data
into a high-dimensional data space such that the classes often become linearly
separable in that space. In particular, SVMs optimize the separation margin.
The implicit handling of this mapping is called the 'kernel trick'. One disad-
vantage of this approach is the complexity of the resulting model (numbers of
support vectors), which can not be explicitly controlled. Further, the support
vectors describe the class border, whereas in several applications (for example in
medicine) class typical prototypes are preferred. An alternative to SVMs is the
learning vector quantization approach based on Hebbian learning of more or less
class typical prototypes [10]. Although heuristically motivated, there exist mod-
i�cations such that a gradient learning according to a cost function takes place.

1The data set with its detailed description is available on the UCI data base
http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
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This method is known as Generalized Learning Vector Quantization (GLVQ,
[12]), which optimizes implicitly the hypothesis margin [3, 13, 7]. Extensions
thereof can deal with di�erent parametrized metrics for optimal classi�cation
results [8, 9, 15]. Recent developments also include kernelized variants [9, 19].
In the proposed challenge we applied the kernelized matrix GLVQ (kGMLVQ).
Thus, a combination of the ideas of SVMs (kernel mapping) with these of GLVQ
(sparse models) is obtained. Additionally, we provide detailed simulation results
from the given training and test data which o�er additional insights to the data
and their class correlations.

2 Classi�cation of vectorial data by prototype based kernel

models

We assume data vectors v ∈ V ⊆ Rn with class labels xv ∈ C = {1, . . . , C} for
training. Many classi�cation models require prototype vectors wk ∈ Rn to rep-
resent the classes. The prototypes W = {wk ∈ Rn, k = 1 . . .M} are responsible
for the di�erent classes according to their prototype labels ywk

∈ C. For the
calculation of the dissimilarities between prototypes and data vector frequently
a parametrized positive semi-de�nite bilinear form

dΛ (v,w) = (v −w)
>

Λ (v −w) = (Ω (v −w))
2

(1)

is used with classi�cation correlation matrix Λ = Ω>Ω and the mapping matrix
Ω ∈ Rm×n realizing a linear data mapping [4, 5]. Obviously, the Euclidean
metric is obtained for Λ being the identity matrix.

For GMLVQ, the classi�cation loss function is de�ned as

EGMLVQ =
1

2

∑
v∈V

f (µ (v)) with µ (v) =
d+ (v)− d− (v)

d+ (v) + d− (v)
(2)

being the classi�er function and f frequently chosen the identity. d+ (v) =
dΛ (v,w+) denotes the dissimilarity between the data vector v and the closest
prototype w+ with the same class label yw+ = xv, and d

− (v) = dΛ (v,w−) is
the dissimilarity degree for the best matching prototype w− with a class label
yw− . Prototype learning takes place as a stochastic gradient descent learning of
the cost function EGMLVQ taking into account the derivatives of the dissimilarity
measure with respect to the prototype vectors. At the same time, the mapping
matrix Ω is optimized also by gradient descent learning.

In SVMs the data are implicitly mapped into a reproducing kernel Hilbert
space (RKHS) by a map Φ uniquely corresponding to an universal kernel κΦ in
a canonical manner [2, 11]. The dissimilarity for images of vectors v and w is
calculated as

dH (Φ(v),Φ(w)) =
√
κΦ(v,v)− 2κΦ(v,w) + κΦ(w,w) (3)

in the RKHS. Universal kernels imply that the image IκΦ
= span (Φ (V )) is

a subspace of H [17]. Generally, the map Φ is non-linear and the topological
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Figure 1: a) principal component projection of the training data b) kernel classi-

�cation correlation matrix Λ̂ c) kernel PCA projection of the data according to the
eigenspace of the kernel classi�cation correlation matrix Λ̂ d) kernel projection of the
data according to the limited rank mapping matrix Ω̂ ∈ R2×n. (Colored image can be
obtained from the authors.)

richness of IκΦ frequently leads to good class separation properties of the mapped
data.

Recently, a kernel variant of GLVQ (kGLVQ) was proposed, which uses dif-
ferentiable continuous universal kernels [19, 18]. Hence, the resulting kernel
distance (3) is also di�erentiable and prototype learning can be performed in
the original data space but now equipped with the kernel distance (3). We refer
to this space as the kernel data space Vκ. In contrast to SVMs, kGLVQ ob-
viously allows a control of the model complexity simply by the chosen number
of prototypes per class. In this way the advantages of kernel mapping can be
combined with the model sparsity provided by GLVQ.

3 Application of the Model to the Competition Data Sets

The training data set consist of 7352 preprocessed vector data of smartphone
inertial sensors such as accelerometers and gyroscope for six user motion ac-
tivities: passive patterns (g-sitting, k-standing, c-laying) and active patterns
(r-walking, b-walking upstairs, m-walking downstairs) [1]. The data dimension
was n = 561. A principal component projection of the training data is given in
Fig. 1. We observe a good visual class separation for the two subgroups whereas
the overall class separability is not given in this projection.

We applied GMLVQ with only one prototype per class to learn the data
using the metric (1) width full matrix Ω, i.e. m = n. The achieved accuracy for
threefold cross validation test was 97.8%. Alternatively, we considered a kGLVQ
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confusion cross validation confusion test

r b m g k c r b m g k c

r 1225 1 0 0 0 0 487 9 0 0 0 0
b 0 1071 2 0 0 0 19 452 0 0 0 0
m 0 5 981 0 0 0 3 12 405 0 0 0
g 0 1 0 1223 42 20 0 1 0 438 52 0
b 0 0 0 59 1315 0 0 0 0 15 517 0
c 0 0 0 0 0 1407 0 0 0 0 0 537

Table 1: Confusion matrices for the cross validation (left) and test data (r-walking,
b-walking upstairs, m-walking downstairs, g-sitting, k-standing, c-laying)

with the parametrized RBF-kernel according to

kΛ (v,w) = exp
(
− (v −w)

>
Λ̂ (v −w)

)
= exp

(
−
(

Ω̂ (v −w)
)2
)

(4)

and refer to this model as kGMLVQ. In this model the kernel width is implicitly
adjusted by the kernel mapping matrix Ω̂. As for GMLVQ, kGMLVQ allows an
automatic adaptation of the matrix Ω̂ by gradient descent learning. Hence, we
obtain a kernel classi�cation correlation matrix Λ̂ providing information about
classi�cation correlations in the kernel data space Vκ. The kGMLVQ with full
kernel mapping matrix Ω̂ and again only one prototype per class achieves an
improved accuracy of 98.2%. The confusion matrix is depicted in Tab. 1 whereas
the resulting kernel classi�cation correlation matrix Λ̂ is visualized in Fig. 1b).
Additionally, the data projection according to the eigen decomposition of the
kernel classi�cation correlation matrix Λ̂ is depicted in Fig. 1c).

The test data set for the competition consists of 2947 vectors. Our kGMLVQ
approach yields 96.23% test accuracy whereas standard GMLVQ results only
95.83%. The confusion matrix of kGMLVQ is depicted in Tab. 1. We observe
that the class probability distribution of the test data is slightly di�erent from
that of the training data, which courses the reduced accuracy values.

If we are interested in class visualization only, an explicit data projection
is required which can be provided by a limited rank kernel mapping matrix
Ω̂ ∈ R2×n [4, 5, 9]. Learning the kGLMVQ system with such matrix generates
a test accuracy of still 93.5%. Yet, the respective kernel projection of the data
delivers well separated classes in the visualization space, see Fig. 1d.

4 Conclusion

In this contribution we present the results of the HAR competition. We applied
kernel GMLVQ with only one prototype per class (sparse model), which process
the data in a metric space isomorphic to a RKHS. The adaptive RBF-kernel is
optimized during learning. At the end, the classi�cation correlation matrix o�ers
additional details regarding class dependencies. The model obtains excellent
classi�cation results and allows an optimized class visualization by limited rank
kernel mapping.
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