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Abstract. The theoretical novelty of many machine learning methods leading to 
high performing algorithms has been substantial.  However, the black-box nature 
of much of this body of work has meant that the models are difficult to interpret, 
with the consequence that the significant developments in machine learning theory 
are not matched by their practical impact.  This tutorial stresses the need for 
interpretation and outlines the current status and future directions of interpretability 
in machine learning models. 

1 Why interpretation and visualization in machine learning? 

The above question directly corresponds in many applications to asking – why should 
machine learning methods be useful in practice?  While there are many publications 
in this huge and significant field of learning, real-world applications are much fewer, 
especially in safety-critical domains. What are the reasons for this? How can flexible 
non-linear models be interpreted? Alternatively, given that there are different ways of 
articulating a flexible regression or classification model, can machine learning models 
be designed so that they are directly interpretable by construction? Is interpretation in 
effect an alternative view of Occam’s razor, leading to models that not only generate 
better insights about the data but also better predictions for new data? 
 The reasons limiting the practical application of flexible models are several.  
Data can be limited and noisy, so generating marginal performance improvements at 
the cost of significant additional complexity – this is often the case with behavioral or 
biomedical data.  Moreover, what is required is often an actionable model, not just 
estimates of conditional density functions. Therefore, notwithstanding the data 
deluge, making models useful requires that they generate insights about the data, not 
just abstract numerical predictions.  
 In some domains these requirements are enshrined in legal doctrines, such as the 
learned intermediaries: the liability for medical decision making rests with the 
physician, a principle that has been tested in court [1].  This hinges on the 
fundamental principle that the doctor is in the best position to assess risks and 
benefits.  Put differently, “it is assumed that the physician has the expertise to 
understand, react to, and determine whether to override the clinical decision support 
system recommendation” [2].  
 This is in fact nothing more than considering the machine learning model to be 
part of the overall computer-based decision support system which for safety-critical 
applications needs to undergo hazards and operability analysis (HAZOP) to ensure, 
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for instance, safety of operation not just for the data used in training and validation 
but  for all possible input values. It is a necessary step to enable the model to be 
completely verified by domain experts. 
 So now we have two requirements of interpretability. One is to generate insights 
about the data in such a way that the domain expert can validate the operation of the 
machine learning model against their expertise, so as to act as a learned intermediary 
between model and the actions derived from the model; the second is to verify that the 
model will remain valid across the full range of inputs – in machine learning terms, 
will not extrapolate beyond the training data. The second requirement is about novelty 
detection.   
 Moreover, data are often well-known to be non-linear. In these cases the need to 
be able to interpret the model at some level, frequently with a hybrid approach where 
the model remains linear-in-the-parameters, typically in the form of a General Linear 
Model, but non-linear data representations are used for instance by binning inputs into 
discrete intervals.  This results in piecewise linear models that can have severe 
weaknesses, chief among them potentially gross errors that arise when even 
experience operators differ in the mapping of continuous values into bins, especially 
near cut points [3]. In practice, the same histological slide being submitted to different 
laboratories may be reported with different prognosis because of the significant effect 
of reporting one interval, e.g. pathological grade, rather than a neighboring grade – 
even though this is due to minor differences between subjective assessments near 
interval boundaries. 
 Therefore we can add a third requirement, namely that flexible models must 
overcome the limitations of linear-in-parameters models that require quantization of 
continuous values into discrete bands. 
 Taken together, these considerations serve to ascertain the level of 
interpretability and potential utility of flexible non-linear models, in summary, to: 
 

1. Map onto domain knowledge. 
2. Ensure safe operation across the full operational range of model inputs. 
3. Accurately model non-linear effects. 

 
These attributes reflect the intent in machine learning models of consolidating and 
analyzing information at the decision point, rather than supplanting the expertise of 
the practitioner.  This level of transparency provides the user with legal protection [4] 
as well as adding valuable external consistency checks during the validation phase of 
the software development lifecycle [5]. 
 In this tutorial, the current state of interpretable machine learning models and 
current directions will be outlined by reference to these three desirable factors, with 
only indicative references. 
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2 Existing data mining tools with interpretable and/or 
visualisable results 

Applicable models need to be accepted by practitioners and this has been articulated 
as requiring explicit documentation of the model structure, effects of uncertainty and 
limitations for its intended applications [4].  

2.1 Nomograms 

 There are four broad categories of implementation of interpretable models that 
are generally used. The most traditional is the use of nomograms [6]. This is a natural 
description of generalized non-linear models since, by construction, these models 
apply a score function that is linear in the parameters.  A familiar example of this is 
the linear term in logistic regression.  Nomograms provide insight into the 
contribution of each covariate i.e. risk factor into the total risk score, so aiding the 
diagnostic process more than just through a one-to-one relationship with a posterior 
probability of class membership. However, this approach fails to meet the second and 
third desirable attributes since it neither verifies the applicability of the score index to 
new data, which may be from an outlier, and requires binning of continuous variables 
in order to model non-linear effects, as noted earlier. 
 An intuitive visualization of the weight of evidence i.e. the contribution of 
covariates in a risk model is a very attractive feature for interpretation of the model 
predictions. Retaining this for non-linear response surfaces, however, is a significant 
challenge.  In this regard, progress has been made in binary classification and survival 
analysis.   The Interval Coded Score model replaces implicit non-linear modeling by 
means of a kernel, so using an explicit parametric approach [7].  Each covariate is 
represented by a large number of binary indicators, each corresponding to an interval 
of covariate values.  A sparsity mechanism is included to reduce the number of 
actually used binary indicators, as such representing an automatically defined score 
system.  Interpretability of the obtained model is improved by providing a color based 
representation, where it is instantly noted that a red color tends to a bad prognosis/ 
diagnosis, and blue tends to a more positive prognosis/diagnosis.  An example is 
given in Figure 1. 
 The extension of score indices to flexible models can take account of non-
linearities through the use of kernels.  A difficulty with this approach can be that the 
risk score is not well calibrated, for instance in the case of the standard SVM, where 
there is no direct correspondence between separation distances to the boundary and 
estimates of the posterior probability of class membership. This has the important 
consequence that while kernel models can be accurate in discrimination with hard 
binary decisions, they do not provide accurate estimates of the uncertainty in the 
predictions. However, progress has been made in linking discriminant methods from 
computational learning theory with probabilistic models [8]. 
 From an interpretational viewpoint, the key factor is to explicitly identify 
interactions between covariates.  This is best done by recourse to model sparseness, 
using the properties of discriminant models to select only the most informative terms 
in the kernel.  A possibility is to restrict the form of the kernel to additive kernels, or 
ANOVA kernels that are able to incorporate interaction effects between covariates.   
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A disadvantage of this approach is that prior knowledge is necessary in order to 
discard terms without a significant contribution.  More recently, sparsity mechanisms 
were used in combination with a restricted Taylor expansion of the RBF kernel to 
select relevant main terms and two-way interaction terms of the covariates.  As such, 
different contributions to the final score can be visualized as 2D maps (see Figure 2) 
[9]. 
 

 
 

Fig1.  Color based representation of a score system to calculate the risk on malignant 
ovarian tumors. [7] 

 
 Two ways to create interpretability by the use of a sparsity mechanism were 
discussed above.  Both of them are used to perform a type of feature selection.  
However, sparsity can be used to increase interpretability in different settings.  When 
using sparsity constraints in the dual setting, it is possible to select observations that 
can be used to represent the data, and thus can be interpreted as prototypes.   
 

 
Fig. 2: Illustration of (a) main and (b) two-way interaction effects using a restricted 

Taylor expansion of the RBF kernel in combination with sparsity constraints. [9] 
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2.2 Rule Induction 

 The second most common interpretation of non-linear models is the induction of 
rule trees. Familiar examples include CART and MARS [10] which applies to 
regression as well as classification. Dendrograms are especially prevalent in 
bioinformatics since they cluster observations with hierarchical trees and so generate 
insights into the data structure. A significant limitation of many rule induction 
methods is reliance on sequential univariate decision points.  This generates naturally 
orthogonal groups i.e. splitting the data into non-overlapping cohorts, but can be blind 
to important non-linear interactions between covariates unless multiple cut points are 
allowed for each covariate, with a consequent proliferation of rules. In addition, the 
results from rule induction can change even with small perturbations to the data. If 
this is the case, it seems the interpretation is not as straightforward as it seems. One 
way to attempt to stabilize the rules is through direct estimation of a discriminant 
model that may use kernels [11] or a probabilistic estimator of the probability of class 
membership, typically a heavily regularized neural network.  
 This alternative approach to rule extraction generates multivariate decision 
points in Disjunctive Normal Form with efficient search methods e.g. Orthogonal 
Search Rule Extraction (OSRE) [12] (see Figure 3). This generally facilitates 
interpretation by returning only a small number of low-order rules [13] albeit at the 
cost of orthogonality i.e. the rules now overlap. This means that the rules need to be 
sorted by their importance usually defined by the coverage of the data, i.e. sensitivity, 
and positive predictive value, which reflects specificity and class imbalance, or 
prevalence. A further advantage of this methodology is that it naturally ‘boxes’ the 
data into closed rules which together form a convex hull of the data density function 
used for rule estimation. Consequently, new cases that are outliers will typically fit 
none of the rules, so flagging for extrapolation. 
 Boolean rules are of course steep in the change in inference from one rule to the 
next. However step-changes are easily smoothed out with fuzzy logic, where 
overlapping intervals in the input data lead to partial membership of consequent rules 
forming an effective implementation of multi-linear interpolation. 
 

 
Fig. 3: Example of a rule generated by OSRE for the Wisconsin breast cancer  

dataset in the UCI repository [12]. 
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2.3 Graphical Models 

 The third ‘canonical’ approach is in fact the most natural interpretation of the 
requirement to open-up the structure of the model to the domain expert. This is most 
readily done with conditional independence models, also called Bayesian Belief 
Networks [10], which represent visually a factorization of the joint density function of 
the data in terms of parent-child associations, shown by edges in the graph.  The 
limitation of these models is that structure finding is NP-complete, therefore 
scalability to large data sets is in general low. The interpretation of the graphs can 
also suffer both from spurious nodes, i.e. false positives typically arising because of 
the need for repeated significance tests for conditional independence. However False 
Detection Rate (FDR) control is now widely used and this has been included in some 
scalable models [14] (see Figure 4). A limitation of this methodology is the need to 
find suitable parametric models for continuous variables. 
 An important development of graphical models is the direct estimation of 
causality [15] and the incorporation of prior knowledge into causal models [16]. 
 

 
 

Fig. 4: Example of a Conditional Independence Map for life expectancy using data 
from UK Local Authorities [17]. 

 

2.4 Data Visualisation 

 Rather than describing the model structure to the user, a fourth approach is 
possible to show instead the structure of the data. This links interpretation with 
another complex domain in machine learning, data visualization, which is equally 
fraught with difficulties in deciding for instance how to evaluate them for objective 
comparisons between different methods. Nevertheless machine learning models are 
data intensive therefore understanding the data can be as crucial as understanding the 
model. Approaches to data structure range from vector quantization, including 
determination of prototypes[18] to topographic maps [19]. In a broad sense, direct 
querying of the data encompasses a broad range of apparently unrelated 
methodologies including also case-based reasoning and k-Nearest Neighbor models.  
A comprehensive review of this broad field would merit a full paper of its own. 
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 We will focus on a recent development that may be grouped under the term 
retrieval based classification. This is similar in concept to k-NN but instead of 
allocating a new data point to a new class, the purpose of the method is to identify the 
most relevant reference cases for the expert user to make this allocation [20]. In a 
sense this approach goes to the core of what the practitioner is trying to do. This is 
done by providing an objective tool based on the central concept of statistical 
similarity with respect to the classification. These methods have potential also for use 
as semi-supervised classifiers [21]. 
 A principled approach to constructing a similarity measure from an estimate of a 
class conditional density function, namely the posterior probability of class 
membership P(Class|x), is obtained from the Fisher Information Matrix.  Having 
estimated this probability using a linear or flexible model, the Riemannian metric 
defined by the Fisher Information can be used to calculate pairwise geodesic distances 
which, in turn, maps the data into a network into which new data points can be 
integrated.  This is the Fisher Information Network, from which communities of 
points can also be identified each with central nodes that may be suitable prototypes 
to describe the community [22] (see Figure 5). This approach is related to choices of 
kernel and also to feature extraction, since the Fisher Information metric naturally 
weights-up the most locally informative directions in data space, suppressing the rest.
   

   
Fig. 5: Fisher Information Network for Magnetic Resonance Spectra from four 

different tumour groups using the methodology detailed in [22]. The figure shows 
network communities each with a prototype, of which there are five: one for each 

class and one for a mixture between two classes. 
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3 Recent developments in sparse and interpretable models 

Having established four generic approaches to interpretation of machine learning 
systems, we now turn to emerging research directions in this field, which are 
represented by papers in the current Special Session on Sparsity for interpretation and 
visualization in inference models. Following last year’s special session [23] the aim is 
now to embed interpretation into the design of machine learning systems by 
constructing them to be parsimonious, on the hypothesis that the simpler the model so 
more interpretable it will be. 
 The first paper puts this intuition into practice by modelling regression with 
only the main effects, expressed here in symbolic form. This is often what is done in 
practice, but the novelty in the paper is to formally assess the detriment in 
performance arising from the simplification of the model using a flexible model of the 
modeling error to obtained guaranteed bounds for inferences on new data. 
 The second paper takes a completely different approach to sparseness, enforcing 
this through kernels. This leads to the identification of prototypes in the context of 
Learning vector Quantization, which also provides an estimate of the convex hull of 
the data. 
 The third paper focuses on the identification and visualization of outliers 
through non-linear modeling of the data density function, expressed visually in a 
cartogram representation showing the magnification factors for a generative 
topographic map with robust statistics. 
 Following the oral sessions there will be three further presentations on 
visualization methodologies to show non-linear dependencies in high-dimensional 
data, demonstrated in practical applications. 
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