
Least-Squares Temporal Difference Learning

based on Extreme Learning Machine

Pablo Escandell-Montero, José M. Mart́ınez-Mart́ınez,
José D. Mart́ın-Guerrero, Emilio Soria-Olivas, Juan Gómez-Sanchis ∗

IDAL, Intelligent Data Analysis Laboratory, University of Valencia
Av. de la Universidad, s/n, 46100, Burjassot, Valencia - Spain

Abstract. This paper proposes a least-squares temporal difference
(LSTD) algorithm based on extreme learning machine that uses a single-
hidden layer feedforward network to approximate the value function. While
LSTD is typically combined with local function approximators, the pro-
posed approach uses a global approximator that allows better scalability
properties. The results of the experiments carried out on four Markov
decision processes show the usefulness of the proposed approach.

1 Introduction

Reinforcement learning (RL) is a machine learning method for solving decision-
making problems where decisions are made in stages [1]. This class of problems
are usually modelled as Markov decision processes (MDPs) [2]. Value prediction
is an important subproblem of several RL algorithms that consists in learning
the value function V π of a given policy π; a widely used algorithm for value pre-
diction is least-squares temporal-difference (LSTD) learning [3, 4]. LSTD has
been successfully applied to a number of problems, especially after the develop-
ment of the least-squares policy iteration algorithm [5], which extends LSTD to
control by using it in the policy evaluation step of policy iteration.

LSTD assumes that value functions are represented with linear architectures,
V π(s) is approximated by first mapping the state s to a feature vector φ(s) ∈ R

k,
and then computing a linear combination of those features: φ(s)⊤β, where β is
the coefficients vector. The selection of an appropriate feature space is a critical
element of LSTD. When a deep knowledge of the problem is available, it can be
used to select a suitable ad-hoc set of features. However, in general the state
space is divided in a regular set of features using for example state aggregation
methods or radial basis function (RBF) networks with fixed bases. Most of these
techniques are local approximators, i.e., a change in the input space only affects
a localized region of the output space. One of the major potential limitations of
local approximators is that the number of required features grows exponentially
with the input space dimensionality [6].

This paper studies the use of extreme learning machine (ELM) together with
LSTD. ELM is an algorithm recently proposed in [7] for training single-hidden
layer feed forward networks (SLFNs). ELM works by assigning randomly the
weights of the hidden layer and optimizing only the weights of the output layer

∗This work was partially financed by MINECO and FEDER funds in the framework of
the project EFIS: Un Sistema Inteligente Adaptativo para la Gestión Eficiente de Enerǵıa en
Grandes Edificios, with reference IPT-2011-0962-920000.

233

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

through least-squares. This procedure can be seen as a mapping of the inputs
to a feature space, where features are defined by the hidden nodes, and then
computing the weights that linearly combine the features. Therefore, ELM can
be combined with LSTD to solve value prediction problems. The main advantage
of this approach is its good scalability to high dimensional problems due to the
global nature of SLFNs.

2 Extreme Learning Machine

Extreme learning machine (ELM) is an algorithm for training SLFNs where the
weights of the hidden layer can be initialized randomly, thus being only necessary
the optimization of the weights of the output layer by means of standard least-
square methods [7].

Let us consider a set of N patterns, D = (xi,oi); i = 1 . . .N , where {xi} ∈
R

d1 and {oi} ∈ R
d2 , so that the goal is to find a relationship between {xi} and

{oi}. If there are M nodes in the hidden layer, the SLFN’s output for the j-th
pattern is:

yj =
M
∑

k=1

hk · f (wk,xj) (1)

where 1 ≤ j ≤ N , wk stands for the parameters of the k-th element of the hidden
layer (weights and biases), hk is the weight that connects the k-th hidden element
with the output layer and f is the function that gives the output of the hidden
layer; in the case of MLP, f is an activation function applied to the scalar product
of the input vector and the hidden weights. Equation (1) can be expressed in
matrix notation as y = G · h, where h is the vector of weights of the output
layer, y is the output vector and G is given by:

G =

f (w1,x1) . . . f (wM ,x1)
...

. . .
...

f (w1,xN) · · · f (wM ,xN)

(2)

Then, the weights of the output layer can be computed as h = G−1 ·o using the
Penrose-Moore pseudoinverse to invert G robustly.

3 Least-squares temporal-difference learning

Temporal difference (TD) is probably the most popular value prediction algo-
rithm [1]; well-known control algorithms like Q-learning or SARSA are based on
TD. It uses bootstrapping: predictions are used as targets during the course of
learning. Let us assume that the value of state s, V π(s), is estimated by first
mapping s to a feature vector φ(s), and then combining linearly these features
using a coefficients vector β, denoted by V π

β (s). Then, for each state on each
observed trajectory, TD incrementally adjusts the coefficients of V π

β toward new
target values. Let V π

βt
(s) denote the value estimate of state s at time t, in the

tth step TD performs the following calculations [1]:

βt+1 = βt + αt(rt + γV π
βt
(st+1)− V π

βt
(st)) (3)

234

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

where rt+1 is the observed reward, γ is the discount factor, and αt is the learning
step-size sequence. TD has been shown to converge to a good approximation
of V π under some technical conditions [1]. It can be observed that, after an
observed trajectory (s0, s1, . . . , sL), the changes made by the update rule of
Equation (3), have the form β = β + αn(d+Cβ + ω), where

d = E

{

L
∑

i=0

φ(si)ri

}

; C = E

{

L
∑

i=0

φ(si)(γφ(si+1)− φ(si))
⊤

}

; (4)

and ω = zero-mean noise [4]. It has been shown in [8] that β converges to a
fixed point βtd satisfying d+Cβtd = 0.

The least-squares temporal difference (LSTD) algorithm also converges to the
same coefficients βtd, but instead of performing some kind of gradient descent,
LSTD builds explicit estimates of a constant multiples of the C matrix and d

vector. Then, it solves d + Cβtd = 0 directly. LSTD uses the following data
structures to build from experience the matrix A (of dimension K ×K, where
K is the number of features) and the vector b (of dimension K):

b =

L
∑

i=0

φ(si)ri; A =

L
∑

i=0

φ(si)(γφ(si+1)− φ(si))
⊤ (5)

After n independent trajectories, b and A are unbiased estimates of nd and
−nC respectively [4]. Therefore, βtd can be computed as A−1b.

In comparison with TD, LSTD improves data efficiency and, in addition,
eliminates the learning step-size parameter αt [4].

3.1 LSTD algorithm based on ELM

An important requirement of LSTD is that the method used to approximate
the value function should compute its output as a linear combination of a set
of fixed features. Although there are many methods that fulfil this requirement,
other powerful methods cannot be combined with LSTD.

SLFN is a well-known function approximator that has been successfully ap-
plied in many machine learning tasks and that, in principle, cannot be used
together with LSTD algorithm. However, when ELM algorithm is employed to
train SLFNs, the training process is equivalent to map the input space into a
set of fixed features through a non-linear transformation defined by the hidden
nodes, and then computing the weights of the output layer through least squares.
Thus, a SLFN can be employed to learn value functions in a LSTD scheme when
it is trained using ELM. The pseudocode of the proposed method is shown in
Algorithm 1.

4 Experiments and results

In this section, the performance of the proposed LSTD algorithm based on ELM
is compared with the classical LSTD combined with RBF features. Experiments

235

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Algorithm 1 LSTD learning based on ELM

Input: Policy π to be evaluated, discount factor γ

1: Initialize randomly w (weights and biases corresponding to the hidden nodes of the SLFN)
2: Let φ(x) : x → f(w,x) denote the mapping from an input x to the output of the SLFN’s

hidden layer
3: Set A = 0; b = 0; t = 0
4: repeat

5: Select a start state st
6: while st 6= send do

7: Apply policy π to the system, producing a reward rt and next state st+1

8: A = A+ φ(st)(γφ(st+1)− φ(st))⊤

9: b = b+ φ(st)rt
10: t = t+ 1
11: end while

12: until reaching the desired number of episodes
13: β = A−1b

14: output V π(s) ≈ φ(s)⊤β

are carried out in a modified version of the MDP used in [4], pictured in Fig. 1.a.
In its original form, the MDP contains m states, where state 0 is the initial state
for each trajectory and state m is the absorbing state. Each non-absorbing
state has two possible actions; both actions bring the current state closer to the
absorbing state, but the step made by each action is different (see Fig. 1.a). All
state transitions have reward -1 except the transition from state m− 1 to state
m, which has a reward of −2/3.

The state space of the original MDP is defined by one dimension, but we are
interested in evaluating the proposed algorithm in MDPs with different dimen-
sionality. Therefore, a generalization of the original MDP to a d-dimensional
space is proposed. For each new dimension, two more possible actions are added
to the action set. The initial state is located at one extreme of the state space,
while the absorbing state is in the opposite extreme. As in its original form, the
reward is -1 for all state transition except for the transitions that reach directly
the absorbing state. Fig. 1.b shows the resulting MDP for the case of d = 2.
Besides generalization to d-dimensions, the discrete MDP is transformed into
continuous. In the continuous version, each state variable can take values into
the range [0, 1], thus, the state space is not discrete anymore. Similar to the

0 1 2

(a) (b)

0

Fig. 1: Discrete MDP for dimensionality 1 (a) and 2 (b).

236

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

discrete case, for each dimension there are two possible actions that bring the
current state closer to the absorbing state in a quantity step or 2× step, where
step is a parameter defined by the user. Furthermore, each action is perturbed
by independent and identically distributed Gaussian noise; the noise amplitude
was 0.2 × step. The initial and absorbing states are also in the two extremes
of the state space; e.g., for dimensionality d = 3, the initial state is defined by
s0 = [0, 0, 0] and the absorbing state by send = [1, 1, 1].

Both methods, LSTD-ELM and LSTD-RBF are used to evaluate a policy
π in a total of 4 MDPs whose dimensionality varies from 1 to 4, where π con-
sists in selecting all possible actions with the same probability. In all MDPs
the discount factor was set to γ = 0.85. The performance of each method is
measured in terms of the mean absolute error (MAE). Similar to [4], MAE has
been measured against a “gold standard” value function, Vmc, built using Monte
Carlo simulation [1] on a representative set of discrete states.

In the LSTD-RBF, it is necessary to select the parameters of the Gaussian
kernels (centres and widths). In the general case, when an RBF network is used
to approximate a function, the centres and widths can be selected according
to the distribution of the data in the input space [6]. However, in LSTD-RBF
the input data is unknown in advance. The solution commonly adopted is to
distribute the centres uniformly along all the input space. To this end, the k-
means clustering algorithm is employed using as input an equidistant grid of
points over the state space. Regarding Gaussian widths, a common approach is
to fix the same widths for all Gaussian kernels using some heuristic. For example,
in [6], the widths are fixed as σ = dmax/

√
2M , where M is the number of

centroids and dmax is the maximum distance between any pair of them. Another
possible heuristic to find the function widths is given in [9]; it consists in, after
selecting the centres, finding the maximum distance between centres and set σ
equal to half of this distance, or one-third in a more conservative case. In our
experiments, RBFs with these three values of widths, denoted by σHay, σAlp1

and σAlp2 respectively, were tested. In addition, the half and twice of these three
heuristics were also tested, i.e., a total of 9 values of σ.

Fig. 2 shows the MAE for both methods versus the number of features.
For the sake of simplicity, Fig. 2 only shows the MAE error of the three best
values of σ for LSTD-RBF. Experiments with LSTD-ELM were repeated 20
times, and the presented results show the worst case. For LSTD-RBF, it can
be observed that using the same number of features MAE generally increases
with the dimensionality of the MPD, whereas for LSTD-ELM it remains almost
constant.Thus, despite the fact that in both cases MAE tends to approximately
the same value, the number of features required by LSTD-ELM to achieve good
performance is notably lower.

5 Conclusions

This paper has presented an LSTD algorithm that uses SLFNs trained with ELM
to approximate the value function. Typically, LSTD has been combined with
local function approximators, whose main drawback is poor scalability when

237

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

Number of features

M
A

E

MDP with 1 dimension

ELM
RBF, 2σ

Alp1

RBF, 2σ
Alp2

RBF, 2σ
Hay

10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

Number of features

M
A

E

MDP with 2 dimensions

ELM
RBF, 2σ

Alp1

RBF, 2σ
Alp2

RBF, σ
Alp1

50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

Number of features

M
A

E

MDP with 3 dimensions

ELM
RBF, 2σ

Alp1

RBF, 2σ
Alp2

RBF, σ
Alp1

50 100 200 300 400 500 600
0

0.5

1

1.5

2

Number of features

M
A

E

MDP with 4 dimensions

ELM
RBF, 2σ

Alp1

RBF, 2σ
Alp2

RBF, σ
Alp1

Fig. 2: MAE versus number of features. For d = 1, it has been used nepi = 2000
episodes, MAE was computed in nmae = 30 equidistant discrete points, Vmc

was computed using nmc = 4.8 · 105 episodes, and step = 0.033. Similarly, for
d = 2: nepi = 3000, nmae = 64, nmc = 1.024 · 106 and step = 0.125. For d = 3:
nepi = 4000, nmae = 343, nmc = 5.488 · 106 and step = 0.143. And for d = 4:
nepi = 5000, nmae = 1296, nmc = 2.0736 · 107 and step = 0.167.

the number of dimension grows. In contrast, the proposed method uses a global
approximator that can deal with high dimensional problems. The performance of
the proposed algorithm has been compared with a classical LSTD based on RBF
in four MDPs, whose dimensionality varies from 1 to 4. The obtained results have
shown that the proposed approach can be scaled to high dimensional problems
better than LSTD-RBF. Future research includes studying its performance in
more complex problems and extending the approach to a control RL algorithm.

References

[1] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The
MIT Press, March 1998.

[2] Martin L. Puterman. Markov Decision Processes. Wiley-Interscience, March 2005.

[3] Steven J. Bradtke and Andrew G. Barto. Linear least-squares algorithms for temporal
difference learning. Machine Learning, 22(1-3):33–57, 1996.

[4] Justin A. Boyan. Technical update: Least-squares temporal difference learning. Machine

Learning, 49(2-3):233–246, November 2002.

[5] Michail G Lagoudakis, Ronald Parr, and L. Bartlett. Least-squares policy iteration. Jour-
nal of Machine Learning Research, 4:2003, 2003.

[6] Simon O. Haykin. Neural Networks and Learning Machines. Prentice Hall, 2008.

[7] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: The-
ory and applications. Neurocomputing, 70(1-3):489–501, December 2006.

[8] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena Sci-
entific, 1 edition, May 1996.

[9] Ethem Alpaydin. Introduction to Machine Learning. The MIT Press, October 2009.

238

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

