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Abstract. The problem considered is the optimization of a multi-scale
kernel, where a different width is chosen for each feature. This idea has
been barely studied in the literature, and through the use of evolutionary
or gradient descent approaches, which explicitly train the learning machine
and thereby incur high computacional cost. To cope with this limitation,
the problem is explored by making use of an analytical methodology known
as kernel-target alignment, where the kernel is optimized by aligning it to
the so-called ideal kernel matrix. The results show that the proposal leads
to better performance and simpler models at limited computational cost
when applying the binary Support Vector Machine (SVM) paradigm.

1 Introduction

The crucial ingredient of kernel methodologies [1] is undoubtedly the application
of the so-called kernel trick, a procedure which maps the data into a higher-
dimensional, or even infinite, feature space. The data separation in this space
is proved to be easier, and allows the formulation of nonlinear variants of any
algorithm which can be cast in terms of the inner products between data points.

Furthermore, the kernel function implicitly determines the feature space F
in such a way that the correct choice of this kernel function becomes an im-
portant issue. These choices are related to the definition of a metric between
input patterns that fosters correct classification. Usually, a parametrized set of
kernels are considered for this purpose, although it is still necessary to choose a
performance measure and an optimization strategy. This optimization is often
done by means of a grid-search or cross-validation procedure over a previously
defined search space, which could be very time-consuming and tedious depending
on the size of the dataset, and also computationally unaffordable when consid-
ering the multi-scale approach. However, other methodologies for optimizing
kernel machine parameters have been studied in state-of-the-art literature, such
as evolutionary algorithms [2], those based on the computation of the smallest
ball enclosing data [3] or meta-learning approaches [4]. In all the three cases,
a large amount of computation is required for optimization, since it involves
training the learning machine several times and, in some cases, the solution of
an additional optimization problem. In order to overcome this handicap, a dif-
ferent and simpler approach is used, known as kernel-target alignment [5, 6].

*This work has been partially subsidized by the TIN2011-22794 project of the Spanish
Ministerial Commission of Science and Technology (MICYT), FEDER funds and the P08-
TIC-3745 project of the “Junta de Andalucia” (Spain).
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This method is independent of the learning algorithm and therefore avoids the
expensive computational procedure of training a classifier. Furthermore, the
resulting optimal solution for a problem can be plugged into different learning
machines. Essentially, kernel-target alignment optimization aims at finding a
kernel function k in a restricted family of kernels such that the induced Gram
matrix presents the smallest distance to the ideal kernel matrix, which preserves
perfectly all the training label structure (represented in this case by similarities
between patterns). This methodology has been successfully applied to binary
classification problems, as well as to multinomial and regression ones.

Our work exploits the potential advantage of developing a method for tuning
the kernel parameters without the need to train the learning machine, which
provides the opportunity to learn more complex kernels (i.e. with a multiple set
of parameters). To do so, the multi-scale kernel is considered (also known as
multi-parametric), where a different kernel parameter is chosen for each feature
with a gradient descent approach that optimizes the kernel-target alignment.
The main motivation for this contribution is that usually spherical kernels (same
weight for each attribute) are used in many real-world applications, where the
attributes present very different natures. These kernels have also been studied
by means of evolutionary approaches [7, 8] or gradient based methods [9, 10],
but almost always considering the training of the learning machine.

The paper is organized as follows: Section II shows a description of the
methodology used; Section III describes the experimental study and analyses
the results obtained; and Section IV outlines some conclusions and future work.

2 Methodology

Although the properties of the kernel function are important, often the kernel
matrix plays a more important role. Since kernel functions allow access to the
feature space only via input samples, the pairwise inner products between ele-
ments of a finite input set X = {x1,...,x,} are the only information available
on the geometry of the feature space. This information is embedded in the kernel
matrix K;; = k(x;,%;). Gram matrices contain information about the similarity
among patterns, thus, the idealized kernel K* [5] will submit the structure:

wie oy Ly =y,
k*(xi, %) = {_1 otherwise, W

where y; is the target of pattern x;. K* will provide information about which
patterns should be considered similar when performing a learning task.

2.1 Kernel-target alignment

Up to this point, let us suppose an ideal kernel matrix K* and a real kernel
matrix K computed for some kernel width . The Frobenius inner product
between them ((K*,K)p = Zg\fj:l k*(xi,%;) - k(x;,%;), being N the number of
patterns) provides information about how ‘well’ the patterns are classified in
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their category. The notion of alignment between K and K* [5, 6] is defined as:

*\ __ <K7K*>F
ARKY) = a0, x, @)
and this quantity is totally maximized when a kernel is able to reflect the dis-
criminant properties of the dataset used to define the ideal kernel.

Far beyond this formulation, some works have noted several issues in kernel-
target alignment for different pattern distribution [5]. This problem has recently
been solved by the use of centered kernel matrices [6], a method that correlates
better with performance than the original definition of kernel-alignment [5]. The
centered kernel matrix can be written as: K. = (Z — ZI%)T(Z —Z1.) =
K-Kl, -1:K+1.:Kl., where Z = [@(x1) -+ D(xn)], D() is the
mapping from input patterns to the feature space, and 1. is a matrix with
all elements equal to % K. will also be a positive semi-definite kernel matrix
fulfilling k(x,x) > 0,V x € X, and symmetry.

2.2 Gradient descent methodology

Due to the differentiability of A with respect to kernel width « (or &), a gradient
descent algorithm can be used to maximize the alignment between the kernel
constructed and the ideal one as follows: a* = argmaxy A(K«, K*). Since « is

a vector comprised of several variables, we will have a gradient vector composed
of partial derivatives VA = {597‘?1, ceey %}, where d is the data dimensionality.
In this work, the iRpropy algorithm is used to optimize the aforementioned
kernel-target alignment, due to its robustness [11]. Although the second partial
derivatives can also be computed and used for optimization, they could actually
make this process more computationally costly due to the complexity of this
second derivative formula. The alignment derivative with respect to the kernel

width « (Eq. 2, but considering the notion of centered kernel) is:

MKellr [Kc[l%

DA(K. (o) K?) 1 [(BEKD, (KK (Ko 58), 3
ba — TR:Tw v (3)

where, for matrices K' and K?, (K!,K2?), = (K', K?), = (K, K?)_ [6].
The kernel selected for that purpose is the well-known Gaussian one: k(x;,x;) =

2
exp (—%) , whose derivative can be computed as:

X, X5 Xi —X; 2 Xi —X; 2
(ak(ag n) S ST (JI il ) @)

However, we also consider the case of the multi-scale Gaussian kernel:

LTiz —Tjz 2 Tiz—Tjz 2
B ;) = exp (— S0, By S [T e (- 2ipz) ()
whose derivative is the following:

Xi,Xj ih—%j 2 Tiz—Tjz 2
(81@59% J)) = (x}ag n) 'ngl exp (_( 202 ) ) (6)
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To avoid including positivity constraints in the optimization problem, a log-
arithmic scale (base 10) is used for parametrization, which does indeed result in
a more stable optimization. Due to the local optimality of the iRprop, several
random or even fixed initial points can be considered; in this case, however,
for the sake of simplicity, the same initial point was used for optimization (10°,
since it is the mean point of the selected kernel values). Furthermore, the suit-
able choice of these initial points is a determining factor in the suitability of the
solutions.

3 Experimental results

Regarding the experimental setup, a stratified 10-fold cross-validation was ap-
plied to divide the data, using the same partitions for all the methods compared.
The results are taken as the mean and standard deviation over each one of the
10 test sets. For model selection, a stratified nested 5-fold cross-validation was
used on the training sets, with kernel width and C parameter of SVM selected
within the values {1073,1072,...,103}.

The results of the experiments are shown in Table 1, where the standard
cross-validation (CV), kernel-target alignment (KTA) and multi-scale kernel-
target alignment (MSKTA) were tested with the SVM paradigm for 7 binary
datasets of the UCI. The Table shows the testing results (mean and standard
deviation, meangp) in terms of accuracy (Acc), time needed for parameters’
optimization (C and «, or C and «, for the MSKTA) in seconds (Op_time), cost
parameter of the SVM (C), number of support vectors (SVs), and alignment for
training (A-) and testing sets (A;s). Note that to obtain the time results, the
algorithms have been run and optimized under the same machine architecture.

Table 1: Results achieved by the three parameter optimization procedures, where
p represents the number of patterns of the dataset and f the number of features.

Dataset {p, /) Method Acc(%) Op-_time C SVs Aty Ats

CV 77.873.56 12.79 1 5.5004 743 102.79 4 0.129.01  0.090.03

glassG2 {163,9} KTA  77.839 66 7.50.7 5.5004 743 120.65 g 0.149.01 0.119. 93
MSKTA 81.5413 67 12414 2.7103 852 96.55 4 0.24g. 01 0.190 06

CV 96715 43 35.23.3 1.9005 846 1011736 0.809.00 0.800.02

breast-w {699,9} KTA  96.855 47 29.64.8 0.550(0 474 101.197.6 0.839.01 0.839.02
MSKTA 96.573 35 55.3¢ 4 0.5500 474 94.628 5 0.85g 01 0.85( 02

CV 70.655.36 1251 7 127.000309. 015 157.91.¢  0.089.9; 0.069_ 93

breast {286,15} KTA 70.307 43 9.0 o 0.001(.000 196.176.2 0.06g.g9 0.00g o1
MSKTA 72.033 gg 243 3 13.60030.653 160.179 5 0.10g9 91 0.070 04

CV 84.09g3 31 16.1; 7 321.400469.885 181.352.8 0.350.01 0.340.06

heart-c {302,22} KTA  84.426 32 12.02 5 1.9002 846 161.891.0  0.350 01 0.340.07
MSKTA 84.737 g2 95.915.5 1.6305 971 155.3,7.1 0.46g.01 0.44¢ 06

[ 97.087 o6 1728.9537.2 730.000434.741 299.430.0 0.049.00  0.-04p.00

sick {3772,33} KTA  97.27) 95 2065.9;53 154.000300.599 393.4119.5 0.059.09  0.050.9;
MSKTA 97.887 gg  4201.3358 7  343.000455 071 160.437 1  0.14¢g gg 0.14¢ o2

CV 84.933.02 [ 54.10048 457 294.775. 7 0.160 09 0.160.03

card {690,51} KTA  84.933 63 53.010.0 22.60040.959 284.6,0.6 0.179, 00 0.179. 02
MSKTA 86.094 17  328.836.9 242.011402 919 230.773.9 0.56g9.01 0.54¢ .05

CV 86.097. 56 13.55 g 115.300312.261 83496 0.180.01  0-179.94

promoters {106,114} KTA 83.9117.37 387110 14.10030 574 83.414.1 0.199.01 0.170.04
MSKTA 86.8217 g5 146.515 3 8.0204 174 49.116.6 0.549.02 0.48g.10

The best method is in bold face and the second one in italics.
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From these results, several conclusions can be drawn. Firstly, the good per-
formance of the proposal can be seen by analysing Acc, which outperforms (for al-
most all datasets) the CV and KTA methods. Furthermore, the results achieved
by these methodologies were very similar, which indicates that the goodness of
MSKTA is due to the multi-scale choice. In terms of time, KTA achieved the
best results, except when considering a high number of patterns or features (sick
and promoters datasets).

The chosen C parameters for SVM were also reported in Table 1, since they
seemed to decrease when kernel-target alignment was used. This cost parameter
controlled the trade-off between allowing training errors and forcing rigid mar-
gins, in such a way that when C' — oo the SVM led to the hard-margin approach.
Therefore, if C is too large, we will have a high penalty for non-separable points
and could store many support vectors, thus leading to overfitting. Because of
that, the number of support vectors per model (SVs) was also considered. From
that result, it can be noticed that the models obtained by MSKTA seemed to
be much simpler (i.e. sparser models) than the ones obtained by CV and KTA,
which could be due to the use of a more complex mapping function, therefore
leading to a more “ideal” transformation of the input space, using the term ideal
in the sense of the kernel mapping leading to a perfectly linear separable set.

Finally, analysing the alignment results (A4, and Ay ), there are several issues
of note. First, the use of the multi-parametric approach leads to far better
alignment. Secondly, training (A;-) and testing alignment (A;s) seem to be
highly correlated, in such a way that high alignment values in the training set
could be robust enough to determine optimal kernel width without any loss of
generality. Last, but not least, similar alignment values were reported for CV
and KTA (indeed, several times KTA values were lower than CV ones, which
could be due to the local optimality of iRprop; ), thus showing the relation
between alignment optimization (KTA) and performance optimization (CV).

The non-parametric Friedman’s test [12] (with @ = 0.1) has been applied
to the mean Acc rankings, rejecting the null-hypothesis that all algorithms per-
form similarly. The confidence interval was Cy = (0, Fiqa—o.1) = 2.81), and the
corresponding F-value was 3.72 ¢ Cy. The Bonferroni-Dunn test has also been
applied and the test concluded that there were statistically significant differences
for a = 0.1, when the MSKTA was selected as the control method, for CV and
KTA (the Bonferroni-Dunn critical difference was 1.05 and that obtained for
both methods was 1.07).

Not only can the proposed methodology be useful in many real-world appli-
cations that present very different attributes, but it also seems to outperform
uni-scale approaches (in accuracy) and to obtain sparser models at a reasonable
computational cost. Moreover, although omitted due to space restrictions, an-
other advantage of the proposal is that it provides the opportunity to perform
feature selection by filtering attributes with large «; values. The reason is that
when kernel width a; — oo, the kernel value for that feature remains invariant
and tends to one, so that feature i is not used for kernel computation (see Eq.
5), which could be beneficial for model interpretability.
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4 Conclusions

This paper makes use of the kernel-target alignment concept in order to optimize
a multi-scale kernel (considering a different width for each feature) for the SVM
paradigm. The optimization of the kernel width has almost always been stud-
ied by means of the learning machine execution, by a simple “trial and error”
procedure which may end up being computationally unaffordable for multiple
kernel widths. The results obtained show that kernel-target alignment is highly
correlated with performance, and that the optimization of a multi-scale kernel
leads to far better results, also in terms of model complexity. As future work, the
study could be significantly extended by considering a higher number of datasets.
Also, other proposals in the literature can be used for comparison, such as evolu-
tionary algorithms or gradient descent ones based on the radius/margin bound
or span of SVMs. Finally, a study of the multi-class case can be carried out
by considering kernel-target alignment for the optimization of every single SVM
decomposition.
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