
Learning Regression Models with Guaranteed
Error Bounds

Clemens Otte ∗

Siemens AG, Corporate Technology
Otto-Hahn-Ring 6, 81739 Munich, Germany

clemens.otte@siemens.com

Abstract. The combination of a symbolic regression model with a resid-
ual Gaussian Process is proposed for providing an interpretable model
with improved accuracy. While the learned symbolic model is highly in-
terpretable the residual model usually is not. However, by limiting the
output of the residual model to a defined range a worst-case guarantee
can be given in the sense that the maximal deviation from the symbolic
model is always below a defined limit. When ranking the accuracy and in-
terpretability of several different approaches on the SARCOS data bench-
mark the proposed combination yields the best result.

1 Introduction

Consider the problem of learning a regression function f : R
p → R from n

training examples (xi, yi), i = 1, . . . , n. Deploying such a data-driven model in
applications where incorrect model outputs may have fatal consequences requires
ensuring that the model is correct for all possible inputs.

In practice, training data are almost always limited and may not represent all
relevant operating conditions. Thus, it is crucial to understand what the model
has learned and in particular how it will extrapolate to unseen data.

Traditionally, approaches like CART [1] or rule-based methods are consid-
ered as being interpretable. Yet this is only true as long as the number of
nodes or rules is rather small, which means that the model is quite coarse. A
possible compromise is to partition the input space similar to CART or rule
learners but to use more complex submodels in the different partitions of the in-
put space. MARS (multivariate adaptive regression splines) [2] and an approach
called GUIDE (generalized unbiased interaction detection and estimation) [3]
follow this strategy; both are briefly compared in an experiment in this paper.

In statistics, additive models [4] are often applied when the model shall be
interpretable. The idea is to learn a multivariate function having p inputs as a
sum of p univariate functions, that is, y = α+

∑p
i=1 fi(xi)+ ε. The advantage is

that the univariate functions may be easier to interpret. However, interactions
between variables cannot be modeled.

In this paper a different strategy is proposed similar to an additive model in
the sense that two functions are added in the final model. The first function is
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used as an analytical model learned by symbolic regression. Symbolic regression
[5] seeks for a symbolic representation (i.e. an equation) best matching the given
data. The learned analytical model is easily interpretable but has only moderate
accuracy. Thus, a second function is learned on the residuals of the first function
in order to improve the accuracy. The model of the second function is not inter-
pretable. But by limiting its output to a defined range a worst-case guarantee
can be given in the sense that the maximal deviation from the analytical model
is always below a defined limit.

Related work: The idea of combining analytical models with data-driven models
can be traced back to hybrid neural networks considered mainly in the 1990-ties,
e.g. [6]. However, there are two key differences. First, in this paper the analytical
model is not considered as being given but is learned from data by symbolic
regression. Second, Gaussian Processes are used as residual models, facilitating
the model selection as there is no need to empirically decide on appropriate
neural network architectures as the model is mainly given by the data itself.

2 Safe and Interpretable Regression

Consider the combined model

f(x) = a(x) + gγ(r(x)) (1)

where a is an analytical (that is, fully interpretable and verified) model, r is a
residual model and gγ provides a limitation. We use gγ(x) = max(min(x, γ),−γ),
γ ∈ R

+, allowing changes of ±γ to the analytical model. The additive combi-
nation is chosen because it facilitates the training of the submodels and the
interpretation of the overall model. If safety requirements allow trading off
interpretability against accuracy, more complex combination schemes may be
devised. For instance, uncertainty estimates of r could be used to influence γ,
giving the residual model more impact in high-confidence regions.

In this paper a is learned using the Eureqa tool for symbolic regression1,
where the training data are used to search for an explicit symbolic representation
based on genetic programming [5]. Alternatively, any method providing a fully
interpretable model may be used.

The residual model r is learned as a Gaussian Process (GP), which is a linear
smoother using a weighted average of the stored training outputs y to predict
the output for a test input. It can be seen as a linear combination of n kernel
functions, each one centered on one of n training points [7],

r(x) =
n∑

i=1

αik(xi,x) , α = (K + σ2
nI)−1y (2)

where x is a test input, xi are the training inputs and α is a weight vector with
the (n × n) kernel matrix K and a hyperparameter σn.

1http://creativemachines.cornell.edu/eureqa
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On larger datasets (e.g. n � 5000 samples) K is not invertible due to time
and memory limitations and approximations to (2) must be used. A good ap-
proximation is known as the Subset-of-Regressors (SR) method [7, p. 176]. In-
stead of summing over all n samples as in (2), only a subset of m < n samples
is used. Information provided by the full set of the n samples is exploited by
considering the similarities between the selected m samples and the n samples
in the form of an (m × n) matrix Kmn.

Using the SR method the residual model is given as

r(x) = km(x)T (KmnKnm + σ2
nKmm)−1Kmny (3)

where km(x) is a vector describing the similarities between the test input x
and the m training samples; the matrices Kmn and Knm = (Kmn)T describe
the similarities between the m and n samples; and the (m × m) matrix Kmm

describes the similarities among the m samples.
The approach is evaluated in the following experiment.

3 Experiment: SARCOS Benchmark

The objective of the experiment is to compare different regression approaches
in terms of their accuracy and interpretability. We consider learning the inverse
dynamics of a seven degrees-of-freedom SARCOS robot arm. The task is to map
from a 21-dimensional input space to a joint torque, that is, we learn a function
f : R

21 → R. There are 44484 training examples and 4449 test examples2. All
21 inputs xi have been standardized to zero mean and standard deviation 1.
The output y has zero mean. Results are given as standardized mean squared
error (SMSE), which is the mean squared error on the test set divided by the
variance of the target values in the test set.

We use the squared exponential kernel where each input dimension is scaled
by an individual factor, allowing the down-weighting of irrelevant inputs. The
kernel function is given as

k(x,x′) = σ2
f exp

(
−1

2
(x − x′)T D−2(x − x′)

)

with diagonal matrix D = diag(�1, . . . , �21) containing the scaling factors of the
input dimensions. In total 23 hyperparameters (�1, . . . , �21, σf , σn) are optimized
during training and the same values are taken in both methods, GP and SR.

As the training set to too large to invert the kernel matrix in (2) it is clustered
into 4000 clusters by kmeans. For each cluster center the nearest training sample
is taken together with its output value, yielding 4000 training samples. For the
GP method these 4000 samples are used in (2), where n = 4000. For the
SR method in (3) the 4000 samples provide the subset, that is, m = 4000
and n = 44484. The experiments are repeated 10 times with different kmeans
clusters and the mean and standard deviation of the test error over the 10 runs
are reported.

2Data are publicly available from http://www.gaussianprocess.org/gpml/data/
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3.1 Results

Test set errors of different methods are reported in Table 1. The selection of the
methods is based on their claim of providing interpretable models – except for
GP and SR, which were chosen as representatives of nonparametric black-box
approaches allowing high accuracy but no interpretability.

RBD refers to a physics-based model derived from rigid-body dynamics.
The RBD result is taken from [7], p. 24. The RBD accuracy is rather poor,
which may be explained by the fact that the robot is actuated hydraulically and
is rather lightweight, so some rigid-body assumptions seem to be violated.

LR refers to a linear regression model with all 21 inputs. Alternatively,
LASSO [4] or elastic net [4] could have been used in order to reduce the number
of inputs. However, their modeling capabilities are the same as LR.

GUIDE [3] is a recursive partitioning algorithm creating a regression tree.
Unlike CART, in GUIDE the leaves may contain linear models either with all
inputs or with a subset of inputs. With the complexity of the submodels in the
leaves being increased, the overall number of nodes can often be kept smaller,
improving the interpretability of the model. The result in Table 1 is achieved
with a model consisting of 35 linear models each having 21 variables.

MARS [2] builds the model as a linear combination of basis functions in the
form of univariate splines and products of univariate splines. A key property of
the basis functions is that they are zero over some part of their range, making
it possible for them to operate locally. The result in Table 1 refers to a model
with 21 basis functions where the maximum interaction level has been limited
to 2, thus, only allowing pairwise products. The model can be found in [8]; it is
not easy to interpret.

Eureqa [5] uses genetic programming for exploring a search space of equa-
tions assembled from pre-specified “building blocks” (e.g. arithmetic operators,
sin, exp) to find an equation best matching the data. Using the mean-squared
error to guide the search on the complete training set and taking the model
having the smallest training set error yields:

y = x2 + 25.31x15 + 11.08x1 + 11.08x18 + 1.73x21 + x1x15 +
x4x21 − x11 − x2x15 − x4x18 − 1.73x8x9 (4)

This representation is sparser and more interpretable than the MARS model.
Unlike the LR model, the Eureqa model includes several terms with two inter-
acting variables, which explains its lower test set error in comparison to the LR
model as shown in Table 1. While in this specific application (4) could in princi-
ple also be found by linear regression –assuming product terms are provided–, it
should be stressed that genetic programming offers much more flexibility, going
far beyond linear regression.

GP and SR refer to the methods applied on 4000 training samples selected
with kmeans as described above. The corresponding entries in Table 1 show the
results for learning the original problem and not the residuals.
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Method SMSE Interpretability
RBD 0.104 ++
LR 0.075 +
GUIDE 0.033 o
MARS 0.059 o
Eureqa 0.062 ++
GP 0.0183 ±0.0006 –
SR 0.0111 ±0.0003 –
Eureqa + SR (γ = 5) 0.0222 ±0.0001 +
Eureqa + SR (γ = 10) 0.0132 ±0.0002 +
Eureqa + SR (γ = 15) 0.0109 ±0.0002 o
Eureqa + SR (γ = ∞) 0.0099 ±0.0002 –

Table 1: Results on the inverse dynamics problem. The error is given as
standardized-mean-squared error (SMSE) on the test set. γ refers to the limi-
tation used in Eq. (1). GP and SR results show mean and standard deviation
over 10 runs. The third column refers to the interpretability of the model: ++:
very high, +: high, o: moderate, –: not interpretable.

Eureqa + SR refers to the combined model in (1), where SR learns the resid-
uals. The limit γ ∈ R provides a worst-case guarantee on the error of the overall
model. When choosing the limit, there is a trade-off between possible accuracy
gains and the worst-case guarantee. In the SARCOS training set the output is
in the range [−108.5, 107.7], so the limits were chosen as γ ∈ {5, 10, 15,∞}. For
example, γ = 10 means that the maximal possible deviation from the analyti-
cal model is ±10, which is less than ten percent of the maximal output values.
The unlimited case is denoted as ±∞. Note that the tightest limit ±5 already
improves the accuracy considerably in comparison to the pure Eureqa model.

3.2 Discussion

The combination of the symbolic Eureqa model with an unlimited residual SR
model yields the best accuracy, which is even slightly higher than that of the
pure GP and SR models. However, in terms of safety nothing would be gained
as it is not possible to fully verify the residual SR model – so the overall model
output may be arbitrarily wrong in the worst case. Thus, the influence of the
residual model has to be limited for providing a worst-case guarantee in the
sense that the maximal deviation from the verifiable analytical model is always
below that limit.

An important observation is that even a strongly limited SR model (e.g. ±5)
greatly improves the accuracy in comparison to the pure Eureqa model, making
it possible to boost the accuracy while still having rather tight limits around the
verifiable model.
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4 Conclusions

Understanding what a model has learned and in particular how it will extrapolate
to unseen data becomes a crucial concern if the model correctness must be
ensured not only for the available data but for all possible input combinations.

Approaches traditionally considered as interpretable, like MARS, CART or
GUIDE, particularly suffer from the trade-off between sparsity (i.e. interpretabil-
ity) and accuracy: for example, a GUIDE model trained on the SARCOS bench-
mark with 35 linear models is not really interpretable but sparser GUIDE models
have a worse accuracy.

An appealing idea is thus to split the problem into learning a sparse, fully
verifiable model and then learning a residual model to enhance the accuracy of
the first. The residual model is not required to be fully interpretable but its
influence is limited to a predefined range. Thus, the combined model has an
improved accuracy and provides error bounds in the sense that the deviation
from the verifiable model is always below a defined limit.

Using symbolic regression for learning the sparse and fully verifiable model
has proven beneficial in the SARCOS example considered here. The model
is sparser and easier to interpret than models provided by MARS, CART or
GUIDE.

Learning the residuals by Gaussian Processes is appealing as it reduces the
training effort to choosing the kernel function and optimizing the hyperparam-
eters by gradient descent. This can be easier than learning the residuals by a
multi-layer perceptron whose architecture is usually determined by trial-and-
error.
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