ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Network community detection with edge
classifiers trained on LFR graphs

Twan van Laarhoven and Elena Marchiori *

Department of Computer Science, Radboud University
Nijmegen, The Netherlands

Abstract. Graphs generated using the Lancichinetti-Fortunato-Radicchi
(LFR) model are widely used for assessing the performance of network
community detection algorithms. This paper investigates an laternative
use of LFR graphs: as training data for learning classifiers that discrimi-
nate between edges that are ‘within’ a community and ‘between’ network
communities. The LFR generator has a parameter that controls the extent
to which communities are mixed, and hence harder to detect. We show
experimentally that a linear edge-wise weighted support vector machine
classifier trained on a graph with more mixed communities also works well
when tested on easier graph instances, while it achieves mixed performance
on real-life networks, with a tendency towards finding many communities.

1 Introduction

Network community detection is the task of identifying communities in a graph.
Informally, a community is a set of nodes, such that there are many edges inside
the community and relatively few edges linking it to the rest of the graph. Here
we consider the traditional view of community structure of a graph as a partition
of its nodes into groups such that each group is a community.

A simple way to find communities in a graph is to identify and remove edges
that connect nodes belonging to different communities. The connected compo-
nents of the resulting graph are the communities (see for instance [, 2]). The
question of community detection then becomes a question of how to pick the
set of edges to remove. In this paper we investigate the effectiveness of a direct
approach to this task, based on supervised learning. Using supervised learning
requires training data, that is, graphs with a known community structure. We
consider training data generated using the LFR model [3]. This model accounts
for the fact that complex real-life networks are characterized by heterogeneous
distributions of degree and community sizes, and that the degrees of nodes, as
well as the sizes of communities follow a power law distribution. Constructing
LFR graphs is efficient with linear complexity in the number of edges of the
graph.

We consider a simple learning setting: linear classifiers acting on local fea-
tures of an edge. Such features can be efficiently computed since they are based
only on the degree of the edge’s nodes and the number of triangles containing
that edge. They are used in heuristic methods for community detection, e.g. |2].

*This work has been partially funded by the Netherlands Organization for Scientific Re-
search (NWO) within the NWO project 612.066.927.

315

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

We investigate empirically two main questions: (a) Is there one classifier trained
on a specific type of LFR graphs that also generalizes well to graphs generated
using other LFR parameter settings? (b) If such a classifier exists, what is its
performance on real world graphs? Extensive experiments indicate that one can
build such a classifier, e.g. using the linear edge-wise weighted support vector
machine. Its generalization performance on the considered real world graphs is
shown to be mixed, with a tendency to detect a high number of clusters. In
general the results indicate that it is possible to learn a simple supervised model
based on few local topological features for identifying community structure in
artificial and real world networks. Therefore community detection, that is graph
clustering, can be addressed using a supervised setting.

2 Community detection by classifying edges

The problem of detecting communities in a graph G = (V, E) can be formulated
as a binary classification task, where the goal is to decide whether each edge
ab € FE is ‘within’ a community or ‘between communities’. A classifier is a
function h that assigns a score to each edge, where edges with a positive scores
are considered to be ‘within a community’. Given these scores, we can construct
the reduced subgraph, containing only edges ab € E for which h(x,,) > 0. In
other words, the reduced graph contains only edges classified as being ‘within a
community’. The connected components of this reduced graph are considered
the graph’s communities.

In order to use a classifier on edges, we need to associate a feature vector x4
to each edge ab € E connecting two nodes a,b € V.

We use simple features employed in heuristic methods for network analysis:
the degrees d,,d, of a,b, the number of triangles containing ab, and the mean
values of these features. This gives a total of 8 features, all of which can be
calculated efficiently. Because the features are local, this calculation can in
principle also be done in parallel for different parts of the graph.

We consider undirected graphs, where ab € E if and only if ba € E. Therefore
features should be symmetric, that is, X4, = Xp,. To this end we replace the
degrees with minimum and maximum degree values, min(d,, dp) and max(d,, dp).

Several heuristic scoring functions have been used in the literature to rank
edges. For instance, in 2] one of the score functions used to rank edges for
performing community detection is the fraction of possible triangles that contain
an edge ab,

tab + 1
min(d, — 1,dpb — 1)’

where %4, is the number of triangles containing the edge ab, which is equivalent
to the number of paths of length 2 between a and b.

The algorithm then iteratively removes the edge with the lowest score from
the graph, until some stopping criterion is reached. At that point, the graph will
contain only edges with scores greater than some threshold 7. That is, edges
ab such that sradicehi(ab) > 7. For the above score function we can rewrite this

SRadicchi (@b) =

316

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

condition in the form of a linear classifier,
h(xab) = <(T + 1a -7, 07 1)7 Xab> > O,

where x4, = (1, min(d,, dy), max(dg, dp), tap). This expression is in the standard
form of a linear classifier, (w,x) > 0.

The Jaccard similarity between the adjacency lists of a and b has also been
used as a score function [4]. If Adj(a) denotes the set of nodes adjacent to a,
this Jaccard similarity can be written as

_ |Adi(a) N Adj(b)|
[Adj(a) UAdi(B)]

SJaccard (ab)

The condition Sjaccara(@b) > 7 can also be rewritten as a linear classifier,
(0, =7, —7,1 — 7),Xgp) > 0.

Instead of using such a fixed score function, we can try to learn one based on a
training graph. The learning problem looks like a standard linear classification
problem. For each edge ab € E we could use the features x,;, defined above,
and labels such that y4; is 1 if @ and b are in the same community, and is —1
otherwise.

The problem of finding the weight vector w is then a linear classification
problem that can be solved by, for instance, a weighted Support Vector Machine.
We call this the edge-wise classification problem. Note that usually incorrectly
keeping a between community edge results in a much larger error in the commu-
nity structure than incorrectly removing a within community edge. Therefore
the weight of negative training instances should be higher.

In extreme cases, all edges incident to a node could be classified as between
community edges. In that case, the connected component containing that node
would be a singleton. However, a single node alone is not a community. We
found that we can significantly improve the quality of the clustering if we avoid
such singletons. To enforce that all communities consist of at least two nodes, for
each node a, we keep the edge with the highest classifier score h(xgp), regardless
of whether this score is positive.

3 LFR benchmark as training data

To learn a classifier, we need training data. I.e. one or more graphs with a
known community structures. For real world applications, such training data
can be hard to come by.

Therefore, we instead use benchmarks specifically constructed to closely re-
semble real world graphs. A popular example is the LFR benchmark by Lan-
cichinetti, Fortunato, and Radicchi |3], which generates artificial graphs that
closely resemble real world graphs. In this benchmark, the size of each com-
munity is drawn from a power-law distribution; as is the degree of each node.
It has previously been observed that real world graphs also have such a power-
law degree distribution Clauset et al. [3]. Therefore, we hope that by using LFR

317

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

graphs for training data, we can train classifiers that also work well on real-world
testing graphs.

The LFR model has several parameters. The most important one is the
mixing parameter p, that controls the fraction of edges that are between com-
munities. Essentially this can be viewed as the amount of noise in the graph.
If p = 0 all edges are within community edges, if p = 1 all edges are between
nodes in different communities.

Other parameters control the number of nodes, the distributions of commu-
nity sizes, the distribution of degrees, etc.

We used the LRF implementation from http://sites.google.com/site/
santofortunato. We consider the four benchmarks used in [6], two with ‘small
communities’ of between 10 and 50 nodes, and two with ‘large communities’ of
between 20 and 100 nodes. Each graph has either 1000 or 5000 nodes in total.
Furthermore the GN benchmark (see [1]) is considered. This is an instance
of LFR with community sizes equal to 32 nodes, and the degree of each node
equal to 16. We refer to the resulting 5 classes of graphs as ‘SMALL1000’,
‘SMALL5000’, ‘B161000’, ‘B1c5000” and ‘GN’.

4 Experiments

Since the true community structure is known for the benchmark graphs, we can
assess the quality of the resulting clustering by means of the Normalized Mutual
Information (NMI) metric, computed between a given output clustering and the
true one [7].

As learning method we consider a linear edge-wise weighted SVM, using
the LIBLINEAR implementation (available at www.csie.ntu.edu.tw/~cjlin/
liblinear/). To select the hyper parameters of the learning method, the regu-
larization parameter and the relative weight of within community edges, we use
a grid search procedure.

First, for each testing graph we used another graph generated with the same
settings as training data. That means that the distribution of training and test
graphs is the same. The left plot of figure [l shows the NMI as a function of the
mixing parameter.

The right plot in figure [I] shows the NMI for a classifier that was trained
on a big community graph with 1000 nodes, and g = 0.5. The same classifier
was used for all tests. The two plots in figure [Il show that the performance is
similar to that obtained with a classifier trained for the specific network genera-
tion parameter settings. This shows that the classifier generalizes well to other
parameter settings of the LFR benchmark.

Further experiments indicate that, in general, classifiers trained on small
communities benchmark graphs also work well for graphs with large communi-
ties, and vice-versa. Additionally, classifiers trained with a particular mixing
parameter p will still perform well on graphs using less mixing. The converse
is not true, however, since graphs with low p are essentially ‘too easy’. They
do not have any examples of between community edges with larger number of

318

http://sites.google.com/site/santofortunato
http://sites.google.com/site/santofortunato
www.csie.ntu.edu.tw/~cjlin/liblinear/
www.csie.ntu.edu.tw/~cjlin/liblinear/

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

g 0.8 I i & | E
= 06} I v
£ £
3 3
= 041 5 SMALL1000 5 N1l = 04 |—= SmMALL1000 [N
£ || —=— SMALL5000 3 £ || —=— SMALL5000 TR
£ (|| Bic1000 \7 | ygl| e Bislo00 e - |
£ 7| |-e—Bies000 Y1 .4 B 7| Bissooo Tht
z Fl-e- GN Lyt 2 F-e-GN
0] i | | I | 0] i | | |
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
Mixing parameter j Mixing parameter j

Figure 1: The performance of classifier based community detection on graphs
generated with the LFR benchmark, as measured with Normalized Mutual In-
formation. The error bars show the standard deviation across different training
and testing datasets. In the left plot a new classifier is trained for each graph. In
the right plot the same classifier is used in all cases, trained on a big community
graph (B1¢1000) with pu = 0.5.

Normalized Mutual Information Number of communities
Dataset Classifier R. Weak R. Strong Infomap Actual Classifier
Zachary 0.649 0 0 0.568 2 4
Football 0.923 0.908 0.201 0.924 12 15
PolBooks 0.522 0 0 0.537 3 9
PolBlogs 0.134 0.014 0.014 0.340 2 322

Table 1: Results on real world datasets.

triangles, which do appear with higher p.

The reason for this generalization results is that the ‘good’ linear classifiers
that are found by the training algorithm are very similar. This suggests that for
a particular set of features there might be a large class of graphs for which the
same scoring or classification function is optimal.

If the LFR benchmark is representative of real world data, then the classifiers
we learned for artificial graphs should also generalize to real world graphs. Since
the classifier trained on the BiG1000 dataset with u = 0.5 generalizes well to
other LFR benchmark graphs, it is interesting to examine its performance on
real world datasets.

We consider real-life networks employed in previous studies. The Zachary’s
karate club; Football: A network of American football games; Political books: A
network of books about US politics; Political blogs: Hyperlinks between weblogs
on US politics.

We compare the results against those of the infomap method [g], a represen-
tative of the state of the art in network community detection [f], and the two
methods proposed in |2], because they are similar to the classifier based method.

319

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Indeed they also use the number of triangles and node degrees as features, and
make local decisions for each edge. The two methods differ in their stopping cri-
terion, one is based on ‘weak communities’, the other on ‘strong communities’,
we refer to them as R. WEAK and R. STRONG, respectively.

Table [shows the results. For the Zachary, Football and Political books
networks, the results of the classifier are close to or better than those of infomap,
and better than those of R. WEAK and R. STRONG. This does not hold for
the Political Blogs network: the actual network is considered to have just 2
communities but the classifier finds a much larger number. Radicchi’s method
has problems with these graphs, often returning a single cluster that contains
all nodes.

5 Conclusion

We investigated how community detection can be approached as a classifica-
tion problem using as training data LFR graphs. An inherent limitation of the
proposed method is the fact that it removes edges in one go, while existing algo-
rithms for community detection based on edge removal incorporate an adaptive
mechanism where the score of the edges is updated each time a (set of) edges is
removed. How to incorporate such a mechanism in a supervised setting without
making the training process too complex is an open issue.

An extended version of this paper and source code are available from http://
cs.ru.nl/~T.vanLaarhoven/learning-communities-2013/.

References

[1] M. Girvan and M. E. J. Newman. Community structure in social and biological networks.
Proceedings of the National Academy of Sciences of the United States of America, 99(12):
7821-7826, 2002.

[2] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. Defining and identifying
communities in networks. Proceedings of the National Academy of Sciences of the United
States of America, 101(9):2658-2663, 2004.

[3] A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for testing community
detection algorithms. Phys. Rev. E, 78(4), 2008.

[4] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann. Link communities reveal multiscale complexity
in networks. Nature, 466:761-764, 2010.

[5] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in empirical
data. SIAM Rev., 51:661-703, November 2009. ISSN 0036-1445.

[6] A. Lancichinetti and S. Fortunato. Community detection algorithms: A comparative anal-
ysis. Phys. Rev. E, 80:056117, Nov 20009.

[7] L. Danon, J. Duch, A. Arenas, and A. Diaz-Guilera. Comparing community structure
identification. Journal of Statistical Mechanics: Theory and Experiment, 9008:09008,
2005.

[8] M. Rosvall and C.T. Bergstrom. Maps of random walks on complex networks reveal
community structure. Proceedings of the National Academy of Sciences of the United
States of America, 105(4):1118-1123, January 2008.

320

http://cs.ru.nl/~T.vanLaarhoven/learning-communities-2013/
http://cs.ru.nl/~T.vanLaarhoven/learning-communities-2013/

	Introduction
	Community detection by classifying edges
	LFR benchmark as training data
	Experiments
	Conclusion

