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Abstract. We study the multi-view feature extraction (MV-FE) frame-
work for the classification of hyperspectral images acquired from airborne
and spaceborne sensors. This type of data is naturally composed by dis-
tinct blocks of spectral channels, forming the hypercube. To reduce the
dimensionality of the data by taking advantage of this particular structure,
an unsupervised multi-view feature extraction method is applied prior to
classification. First, a technique to automatically obtain the blocks, based
on the global spectral correlation matrix, is applied. Then, the kernel
canonical correlation analysis is performed in a multi-view setting (MV-
kCCA) to find projections of the data blocks in a correlated subspace,
gaining thus discriminant power. Experiments using the linear discrim-
inant classifier (LDA) show the appropriateness of adopting a MV-FE
approach.

1 Introduction

Hyperspectral images acquired by airborne and spaceborne sensors have been
extensively used in Earth observation applications, thanks to the detailed in-
formation about the energy reflected or emitted by the different ground covers.
The use of hyperspectral data has been successfully documented, among others,
in urban monitoring, forest biomass estimation, crop and cultivation assessment,
mineral and geological exploration, target and hotspot detection [1]. The num-
ber of spectral channels available for the detailed analysis of the materials is very
large: the dimensionality of hyperspectral data may range from dozens to thou-
sands variables (spectral bands) and it can prevent the successful application of
standard pattern recognition techniques, in particular under small sample size
situations. This is known as the curse of dimensionality [2]. To avoid these ad-
verse effects on many learning systems, it is common to apply as a preprocessing
step, one among the many existing feature extraction (FE) or dimensionality
reduction (DR) techniques [3]. The benefits of FE methods such as, to name
a few, principal component analysis (PCA), its kernel extension (kPCA), par-
tial least squares and its nonlinear variants (PLS, NIPALS or kernel PLS) and
canonical correlation analysis (CCA), are well documented [4].
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The underlying idea of feature extraction is that the most of a specific
data characteristic, usually coded by a statistic, can be maximally preserved
while reducing the data dimensionality and removing noisy or uninteresting sub-
spaces. This criterion defines the type of information contained in the retained
(sub)space in which the data are projected. For instance, in the PCA one looks
for the directions maximizing the variance of the original data, with PLS for the
covariance among two sets and with CCA for a joint mapping that maximizes
the empirical correlation. In parallel, the kernelization of these methods has
been considered to implicitly work in a higher dimensional reproducing kernel
Hilbert space (RKHS) providing nonlinear solutions in the original space.

Approaches aiming at jointly combining different views of the same exam-
ples are known as multi-view learning (MV) methods [5]. In this framework,
one looks for an intrinsic combination of the disjoint feature sets to optimally
solve the task at hand, such as clustering, classification or, as in our case, FE.
In this work, the multi-view kernel CCA (MV-kCCA) [6, 7] is introduced for
dimensionality reduction of hyperspectral data, by accounting for the multiple
views that naturally compose such data. First, on the basis of the block struc-
ture of the correlation matrix among spectral bands, distinct subsets of channels
are automatically selected via clustering [8]. The MV-FE step is then performed
using these distinct structures as disjoints feature sets describing the common
(paired) examples, the pixels. The underlying assumption is that, by separately
considering blocks of strongly correlated spectral bands, the FE step can dis-
cover useful nonlinear projections for classification, hidden in the within-block
variability versus the usually much higher between-blocks covariance.

Experiments on real world hyperspectral data show promising results for the
MV-FE to reduce the dimensionality before linear classification using LDA [7].

2 The multi-view feature extraction system

2.1 View generation

To take advantage of the block structure of the hyperspectral data in a MV-FE
context, the complete hypercube should be decomposed in disjoint sub-blocks.
In the MV literature, it is common to assume that the views satisfy criteria of
sufficiency, i.e. contain enough information to guarantee stable learning, consis-
tency (labelings agree along the views) and independence, often relaxed to more
realistic situations [5]. In the case of hyperspectral data, spectral bands form
distinct sets depending on the sensed ground materials.

To automatically obtain a partitioning of the bands, the correlation matrix
between spectral channels is clustered using k-means. Groups showing a low
within cluster variations and large distance to the other clusters are automat-
ically selected by the partitioning, thus implicitly grouping the linear depen-
dencies between channels. For instance, this scheme has been adopted in [8]
to perform active learning based on the disagreement of a committee of clas-
sifiers on the views. To automatize the process, the number of band clusters
(views) to be discovered in the partitioning is given by |λq|, where λq is the set
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of the sorted eigenvalues of the correlation matrix explaining a given amount of
variance, given by ε [9].

2.2 The multi-view canonical correlation analysis

The extension of the CCA to multiple sets has been first proposed in [10], and it
finds nowadays different applications [6, 11]. The idea is to find automatically a
series of mappings of the input blocks in a subspace maximizing the correlation
among them. The standard CCA (two views, k = 1, 2) can thus be solved by
the wk maximizing
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which provides a natural extension to (2, . . . , k) sets (views). In our case,
Xk ⊆ X, ∀ k, with Xk = X only when considering one view. Here, k must
be at least equal to 2 (standard CCA). To obtain a kernel expression, the primal
formulation in Eq. (1) is replaced with its dual by plugging wk = XT
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where Kkk are centered kernel matrices computed on the k-th view, and γ is
a user-defined penalization to avoid overfitting of correlations when using ker-
nels inducing very high-dimensional spaces [6]. The projected data view k, or
canonical variate, is obtained as Yk = Kkkαk.

3 Experimental analysis

To test the proposed method, two airborne hyperspectral images are used. The
first (KSC) is acquired in 1996 over the natural area of the Kennedy space
center (FL, USA) by the AVIRIS sensor (Airborne Visible / Infra Red Image
Spectrometer). The sensor acquires 224 bands of 10nm width each, from 400nm
to 2500nm. The second dataset (PAVIA) is acquired by the ROSIS-03 (Reflec-
tive Optics System Imaging Spectrometer) sensor over the urban area of Pavia
(Italy), in the range between 430nm and 860nm with 4nm bandpass for a total
of 115 channels. In both cases, water absorption bands and low signal-to-noise
ratio are manually removed, resulting in 176 and 102 bands respectively. The
classification following the FE step involves different classes of land cover, 13
for KSC and 9 for PAVIA, to be classified using a linear discriminant. The use
of a simple and linear classifier is preferred to evaluate the effectiveness of the
nonlinear FE step. The view generation approach grouped the KSC and PAVIA
datasets in 6 and 3 groups respectively, with a threshold retaining in both cases
the 99.9% of the explained variance of the PCA rotation.

The MV-kCCA has been compared to standard classification and after kPCA
using the whole image, ‘Whole Class.’ and ‘Whole kPCA’ respectively, and to
majority voting of the independent classifications of the original spectral blocks
(‘Maj. Vote Input’). For the MV-kCCA, three different feature combinations
are tested. The ‘Stack’ approach replaces each block of original spectral bands
by their lower dimensional representations found by MV-kCCA, i.e. replacing
Xk by Yk. Thus, the classification is carried out in a space with dimensions
equal to the number of eigenvectors extracted times the number of views k. The
‘Sum’ approach additions, for each pixel, the projections of each block after
normalization, i.e. substituting X by

∑
k Yk [12]. The ‘Maj. Voting’ consists in

simple unweighted voting over the independently classified projected views.
The regularization parameter of the MV-kCCA has been set empirically to

γ = 0.1 for both datasets. The RBF kernel bandwidth (for the MV-kCCA and
kPCA) has been fixed as the median Euclidean distance among the samples in
each view. To compute kernels, 500 randomly chosen pixels among the unla-
beled samples have been used in each case study. The linear discriminant has
been trained with 50 example pairs per class for both datasets, while the re-
maining 4561 (KSC) and 147’702 (PAVIA) assess the generalization accuracy.
Experiments are repeated 10 times using independent initializations.

In Fig. 1(a),(c) the average Cohen’s κ coefficient of agreement is plotted
with their respective standard deviations, for the KSC and PAVIA dataset re-
spectively, versus the growing number of eigenvectors used. The advantages of
replacing spectral blocks by their respective canonical variates appears imme-
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Fig. 1: (a),(c) Classification accuracy for the tested setups along with the stan-
dard deviations, for KSC and PAVIA datasets. In (b),(d) classification and
voting for the independent views for KSC and PAVIA datasets. In (b),(d) the
horizontal solid lines represent the accuracy of the views classified independently.

diately. Interestingly, for both datasets by using the first 6 canonical variates
of each block (thus classifying the KSC and PAVIA datasets in a 36 and a 18
dimensional space), the accuracy of the ‘Whole class.’ is reached. The kPCA
reaches the ‘Whole Class.’ accuracy when using more than 70 (KSC) and 37
(PAVIA) kernel principal components. For the ‘Sum’ approach, 60 dimension
(KSC) and 15 (PAVIA) are needed. The highest accuracies for KSC and PAVIA
data are obtained when stacking the projections of the views issued from 30 and
15-20 (plateau effect) eigenvectors respectively. The standard deviations of the
accuracy of tested approaches are very low thanks to the stability of both the
classifier and the MV-kCCA.

In Fig. 1(b),(d) accuracies for single view classification are plotted. The one
for ‘View 2’ equals the ‘Whole Class’ performance for both datasets, after the
projection into a (nonlinear) 40 dimensional subspace for the KSC (originally
composed by 31 spectral bands) and 22 for PAVIA (originally including 36 chan-
nels). The corresponding majority voting behaves similarly. Furthermore, note
that the classification of feature blocks mapped into a subspace of (approxi-
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mately) 10 dimensions always outperforms the classification of the original ones.
It is also worth noting that, generally, the ordering of the curves of the mapped
blocks for a given dimensionality is the same as the one of the original groups.

4 Conclusions and future work

It has been illustrated that when disposing of a high dimensional hyperspectral
image, the MV-kCCA is a valid alternative to single-view traditional unsuper-
vised nonlinear FE techniques. In particular, by considering disjoint blocks of
correlated features, accuracies higher than original data classification can be ob-
tained (also when using a comprehensive lower dimensional data representation).

Future developments will consider a classification oriented MV feature ex-
traction framework, in which the available labeled information is included to
learn discriminant subspaces. Attention will be paid to particular case of the
Fisher’s discriminants and their kernel extension. Also, to approach the MV-FE
task from a semi-supervised perspective, manifold-based regularization will be
considered.
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