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Abstract. Semi-supervised learning (SSL) is focused on learning from
labeled and unlabeled data by incorporating structural and statistical in-
formation of the available unlabeled data. The amount of data is dra-
matically increasing, but few of them are fully labeled, due to cost and
time constraints. This is even more challenging for non-vectorial, proxim-
ity data, given by pairwise proximity values. Only few methods provide
SSL for this data, limited to positive-semi-definite (psd) data. They also
lack interpretable models, which is a relevant aspect in life-sciences where
most of these data are found. This paper provides a prototype based SSL
approach for proximity data.

1 Introduction

Large data sets are more and more common but the annotation of these data is
often time consuming and costly. Accordingly, many of them are only partially
labeled. Semi-supervised learning (SSL, [1, 2]) integrates the structural and
statistical knowledge of unlabeled data in the training process of a classifier,
rather to ignore unlabeled points as it is still very common. A variety of methods
on SSL has been published [1]. They all focus on vectorial data sets, often
binary-class data, or in case of kernel-approaches like the Semi-Supervised SVM
(S3VM) (see e.g. [2]) on psd kernel matrices.

Another very relevant source of partially labeled data, are proximity data,
which however are not much considered in the literature as an SSL problem.
Proximity, (dis-)similarity or relational data sets, are based on pairwise com-
parisons of objects providing score-values of the proximity of the objects. A
vector space is not necessarily available for such data and the score-functions
need not to be metric. In fact, many domain specific proximity measures are
of this type, with the most prominent example of alignment algorithms, like
the Smith-Waterman algorithm for sequence data [3]. Multiple methods for
relational learning were published (see work based on [4]) but view for SSL
problems. In this paper we propose a sparse SSL algorithm, directly applicable
on non-psd proximity multi-class data.

We review relational supervised prototype learning (RPC) as introduced by
the authors earlier and a specific model employing conformal prediction as pro-
posed recently in [5] called C-RPC. Thereafter we introduce an extension of
C-RPC to semi-supervised learning (SC-RPC). We show the effectiveness on
real life data for known vectorial data sets and biomedical dissimilarity data.
Finally we summarize our results and discuss potential extensions.
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2 Preliminaries about dissimilarity data

Let vj ∈ V be a set of objects defined in some data space, with |V| = N . We
assume, there exists a dissimilarity measure such that D ∈ RN×N is a dissim-
ilarity matrix measuring the pairwise dissimilarities Dij = d(vi,vj) between
all pairs (vi,vj) ∈ V. Any reasonable (possibly non-metric) distance measure
is sufficient. We assume zero diagonal d(vi,vi) = 0 for all i and symmetry
d(vi,vj) = d(vj ,vi) for all i, j.

3 Relational prototype based learning

We assume a training set is given where data point vj is labeled lj ∈ L, |L| = L.
The objective is to learn a classifier f such that f(vk) = lk for any given data
point. Thereby, vk is represented implicitly by a vector of known dissimilarities
with respect to W ⊆ V. In [6] the authors proposed a relational prototype
classifier (RPC) used as the basic method in this article.

Classification takes place by means of k prototypes wj in the pseudo-Euclidean
space, which are priorly labeled. Typically, a winner takes all rule is assumed, i.e.
a data point is mapped to the label assigned to the prototype which is closest to
the data in pseudo-Euclidean space using Eq. (1). For relational data classifica-
tion, the key assumption is to restrict prototype positions to linear combinations
of data points of the form wj =

∑
i αjivi with

∑
i αji = 1 . Then dissimilarities

can be computed implicitly by means of

d(vi,wj) = [D · αj ]i −
1

2
· αtjDαj (1)

where αj = (αj1, . . . , αjn) refers to the vector of coefficients describing the pro-
totype wj implicitly, as shown in [7]. The original underlying cost function [8]
was adapted in [6] for relational learning and becomes:

ERPC =
∑
i

Φ

(
[Dα+]i − 1

2
· (α+)tDα+ − [Dα−]i + 1

2
· (α−)tDα−

[Dα+]i − 1
2
· (α+)tDα+ + [Dα−]i − 1

2
· (α−)tDα−

)
, (2)

where the closest correct and wrong prototypes are referred to, w+ and w−,
respectively, corresponding to the coefficients α+ and α−, respectively and
Φ(x) = (1 + exp(−x))−1. A simple stochastic gradient descent leads to adap-
tation rules for the coefficients α+ and α− [6]. After every adaptation step,
normalization takes place to guarantee

∑
i αji = 1. The prototypes are initial-

ized as random vectors corresponding to random values αij which sum to one.
Out-of-sample extension of the classification to new data is done as shown in [7].

3.1 Semi-supervised conformal prediction for RPC (SC-RPC)

Let (T1) denote the labeled training data with zi = (vi, li) ∈ Z = V × L.
Furthermore let vN+1 be a new data point with unknown label . The conformal
prediction computes for given training data (zi)i=1,...,N , an observed data point
vN+1, and a chosen error rate ε an (1−ε)-prediction region Γε(z1, . . . , zl,vN+1) ⊆
L consisting of a number of possible label assignments.
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3.1.1 Computation of the prediction region

To compute the conformal prediction region, a non conformity measure is fixed
A(D, z). It is used to calculate a non conformity value µ that estimates how an
observation z fits to given representative data D={z1, . . . , zN}. The conformal
algorithm for classification is as follows: given a nonconformity measure A, sig-
nificance level ε, examples z1, . . . , zN , object vN+1 and label l, it is decided
whether l is contained in Γε(z1, . . . , zN ,vN+1):

set zN+1 := (xN+1, l)

for i = 1, . . . , N + 1 set

µi := A({z1, . . . , zN+1}\{zi}, zi)

set rl :=
|{i = 1, . . . , N + 1 | µi ≥ µN+1}|

N + 1
include l if rl > ε

Given z = (xi, l) and a trained relational prototype model W , we choose

µi :=
d+(xi)

d−(xi)
(3)

with d+(xi) being the distance between xi and the closest prototype labeled
l, and d−(xi) being the distance between xi and the closest prototype labeled
differently than l where distances are computed according to Eq. (1)1

3.1.2 Confidence and credibility

The prediction region Γε(z1, . . . , zN,vN+1) is the core of conformal prediction.
For a given error rate ε it contains the possible labels of L that ensure low error
ε. But how can we use it for prediction?

Suppose we use a meaningful non conformity measure A. If the value ε is ap-
proaching 0, a conformal prediction with almost no errors is required, which can
only be satisfied if the prediction region contains all possible labels. If we raise
ε we allow errors to occur and as a benefit the conformal prediction algorithm
excludes unlikely labels from our prediction region, increasing its information
content. In detail those l are discarded for which the r-value is less or equal ε.
Hence only a few zi are as non conformal as zN+1 = (vN+1, l). This is a strong
indicator that zN+1 does not belong to the distribution Z and so l seems not to
be the right label. If one further raises ε only those l remain in the conformal
region that can produce a high r-value meaning that the corresponding zN+1 is
rated as very typical by A.

So one can trade error rate against information content. The most useful
prediction is those containing exactly one label. Therefore, given an input li
two error rates are of particular interest, εi1 being the smallest ε and εi2 being
the greatest ε so that |Γε(D,vi)| = 1. εi2 is the r-value of the best and εi1 is the
r-value of the second best label. Thus, typically, a conformal predictor outputs
the label l which describes the prediction region for such choices ε, i.e. Γε = {l},
and the classification is accompanied by the two measures

1See [5] for a detailed discussion about this non-conformity measure and its validity.
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confidence : 1− εi1 = 1− ry2nd credibility : εi2 = ry1st (4)

Confidence says something about being sure that the second best label and all
worse ones are wrong. Credibility says something about to be sure that the best
label is right respectively that the data point is (a)typical and not an outlier.

3.1.3 Model complexity and SSL in C-RPC

We use the additional information provided by a conformal relational prototype
classifier to automatically adapt the complexity of the model, i.e. the number
of prototypes. We assume that a larger amount of the data is unlabeled which
we denote as T2, the training set is denoted as T1 to train the model, while T2
is used to estimate the suitability of the current model by means of conformal
prediction. For this subset, we compute µ-values according to (3). This provides
point estimates for confidence and credibility of the classifier. We collect the set
of points B with low credibility and/or confidence. A low confidence is given if
(1− εi1) ≤ (1− 1

L ) and a low credibility is observed for εi2 ≤ 1
L . Hence we define

B =

{
vi ∈ T2 :

(
1− εi1

)
≤
(

1− 1

L

)
∨ εi2 ≤

1

L

}
(5)

If |B| is large, in our case we take the boundary ≥ 5, the complexity of the
classifier is not yet sufficient. Hence, this parameter controls the sparsity of the
model. We found by some independent experiments on simulated data, that
|B| = 5 is a good compromise between too dense |B| =≤ 5 or to sparse models
|B| � 5. A new prototype is created and set to the representative data point
(median) in B, it is labeled according to the label of the nearest neighbor from
set T1. The detailed, commented algorithm is shown in Alg. 1.

The C-RPC and SC-RPC approach scale quadratic in the number of train-
ing examples and the size of prototype representations scales in O(N). Ker-
nel approaches need to calculate a valid kernel from the dissimilarities with
O(N2)−O(N3) and show often very dense models. Also kNN scales in O(N2)
regarding the runtime. So all standard methods are quite costly whereas our ap-
proach provides sparse,interpretable models which can be trained in reasonable
time and keep good generalization and query time for the test set, permitting
pointwise measures of confidence.

4 Experiments

We evaluate SC-RPC (Alg-1) and C-RPC (Alg-2) on a larger range of tasks
including, vectorial SSL benchmark data sets2, i.e. Digit1, USPS, G241c, G241n,
COIL and five well known UCI data sets3. Dissimilarity matrices D have been
generated by using the squared-Euclidean distance. Further we evaluate our

2http://www.kyb.tuebingen.mpg.de/ssl-book
3http://archive.ics.uci.edu/ml/datasets.html
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Algorithm 1 Semi-Supervised C-RPC (SC-RPC)

1: init: credi threshold := 1
L

, confi threshold := 1− 1
L

; W := ∅;
2: B := ∅; improve := 1%;
3: max itr := 100 . maximal total iterations
4: max ctn best := 10 . maximal iterations for a result as winner
5: W := train T1 by RPC ; W Best = W ;
6: acc := evaluation of W ; . accuracy w.r.t. T1
7: A T1 := {µi, ∀i ∈ T1},A T2 := {µi,∀i ∈ T2} . µ-values of T1, T2: eq. (3)
8: generate B . eq. (5)
9: while |B| ≥ 5 & itr < max itr & ctn best ≤ max ctn best do

10: W := W
⋃
{new prototype(s) from B}

11: W := train T1 by RPC given W ; . training with given prototypes
12: acc new := evaluation of W ; . new accuracy
13: A T1 := {µi, ∀i ∈ T1}; A T2 := {µi,∀i ∈ T2} . µ-values acc to eq. (3)
14: Confi := {1− εi1,∀i ∈ T2}; Credi := {εi2, ∀i ∈ T2}; . eq. (4)
15: generate B,
16: if acc new − acc ≥ improve then
17: W Best = W ; acc = acc new; ctn best = 0;
18: else ctn best = ctn best+ 1;
19: end if
20: end while
21: return W Best;

data on two relational data sets, where no direct vector embedding exists and
the data are given as (dis-)similarities. The SwissProt data set (SWISS) consists
of 5, 791 samples of protein sequences in 10 classes taken as a subset from the
popular SwissProt database of protein sequences [9] (release 37). The 10 most
common classes such as Globin, Cytochrome b, etc. provided by the Prosite
labeling where taken. Sequences are compared using Smith-Waterman alignment
[3]. The Copenhagen Chromosomes data (CHROMO) constitute a benchmark
from cytogenetics [10]. 4,200 human chromosomes from 21 classes, represented
by grey-valued images and encoded as strings measuring the thickness of their
silhouettes. These strings can directly be compared using the edit distance with
insertion/deletion costs 4.5 [10]. We randomly select 100 examples of the data
to be used as labeled examples, and use the remaining data as unlabeled data.
The experiments are repeated for 30 times and the average test-set accuracy (on
the unlabeled data) and standard deviation are recorded. Both algorithms have
been initialized with 1 prototype per class, selected randomly from the labeled
data set. The results are shown in Table 1. In all but three cases, semisupervised
learning improves the result.

5 Conclusions

We proposed an extension of C-RPC for semi-supervised learning. It is a natural
multi-class semi-supervised learner for vectorial and non-vectorial data sets. Our
experiments show that the approach shows in general superior results compared
to standard C-RPC learning based on the labeled data alone. In future work
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Diabetes German Haberman House WDBC

Alg-1 71.00 (2.6) 69.7 (0.70) 73.3 (2.6) 90.4 (1.7) 93.3 (1.3)
Alg-2 69.10 (3.5) 70.0 (0.52) 71.7 (4.4) 89.17 (1.07) 92.2 (1.5)

Digit1 USPS G241c G241n COIL

Alg-1 93.21 (2.6) 80.00 (0.01) 73.1 (5.3) 69.70 (4.7) 64.7 (9.0)
Alg-2 82.42 (9.6) 79.95 (0.27) 72.31 (5.13) 69.89 (3.65) 56.75 (4.63)

SwissProt CHROMO

Alg-1 84.04(2.51) 80.70(3.11)
Alg-2 82.57(3.51) 79.44(2.62)

Table 1: Classification results for different vectorial and non-vectorial data.

we will explore SC-RPC for non-i.i.d. labeled data and approach large scale
problems using techniques discussed in [6]4
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