ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Non-Euclidean Independent Component Analysis
and Oja’s Learning

M. Lange', M. Biehl?, and T. Villmann*

1- University of Appl. Sciences Mittweida - Dept. of Mathematics
Mittweida, Saxonia - Germany
2- University Groningen - J.-Bernoulli-Inst. of Mathematics and Computer Sciences
Groningen, The Netherlands

Abstract. In the present contribution we tackle the problem of nonlinear
independent component analysis by non-Euclidean Hebbian-like learning.
Independent component analysis (ICA) and blind source separation orig-
inally were introduced as tools for the linear unmixing of the signals to
detect the underlying sources. Hebbian methods became very popular and
succesfully in this context. Many nonlinear ICA extensions are known. A
promising strategy is the application of kernel mapping. Kernel mapping
realizes an usually nonlinear but implicite data mapping of the data into
a reproducing kernel Hilbert space. After that a linear demixing can be
carried out there. However, explicit handling in this non-Euclidean ker-
nel mapping space is impossible. We show in this paper an alternative
using an isomorphic mapping space. In particular, we show that the idea
of Hebbian-like learning of kernel ICA can be transferred to this non-
Euclidean space realizing an non-Euclidean ICA.

1 Introduction

Independent component analysis (ICA) and blind source separation (BSS) con-
stitute a paradigm to extract independent sources from a sequence of mixtures
[5, 10, 15]. It can be seen as a generalization of principal component analysis
(PCA). The generic problem consists in separating useful independent signals
from noise and interferences [6]. Originally, respective methods were considered
as linear models. There exists a whole bunch of methods to tackle this problem.
They differ mainly on the a priori assumptions about the underlying mixing
model. One of the key principles of ICA is 'non-Gaussianity’ as an equivalent of
independence together with the central limit theorem (CLT,[13]) [5, 10]. Differ-
ent approaches were developed to contrast this property: approximations of the
negentropy [19] were developed in [10, 14|, mutual information and the infomax
principle were considered in [4, 22, 25, 26, 9]. ICA and projection pursuit is
addressed in [14]. A large family of Hebbian-like learning algorithms for ICA
utilize implicitly the kurtosis as a contrast function [12, 11, 17, 18].

Nonlinear approaches of ICA and BSS are natural generalizations of the linear
approaches and were addressed in [12, 16]. Several investigations consider kernel
methods to deal with nonlinear separation [2, 7, 20]. However, these models are
not based on Hebbian-like learning ICA. Recently, kernel PCA has been studied
in terms of Hebbian learning by a kernelized variant of Oja-learning realizing a
non-Euclidean PCA [3]. We transfer this idea to Hebbian-like ICA in the present
contribution and provide the theoretical basis. We demonstrate the abilities of
this new approach for exemplary source separation problems.
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The paper is organized as follows: First, we briefly review ICA based on
kurtosis contrast. Then, we reconsider the Hebbian-like algorithms for learn-
ing independent components. Finally we introduce our kernel based approach
illustrate it in terms of an application example..

2 Linear Independent Component Analysis by Hebbian-
like Learning Using the Kurtosis

As mentioned in the introduction, one key principle of ICA is to estimate in-
dependence by non-Gaussianity. In this context we consider sequences of n-
dimensional mixture vectors v (t) € Vg, C R™ with the Euclidean distance dg.
We assume that a pre-whitening x () = Pv (¢) takes place such that the expec-
tation becomes F [XXT] = I. Further, we suppose a linear mixing model

v (t) = As (t) (1)

such that x (¢) = Ms (¢) is valid with M = PA. It turns out that M has to be
orthonormal to ensure E [xx'] =L Let

S; = <miT,x> = ZijIj (2)
j=1

be the ith source where m; is a column vector of M. Here z; are stochastic
quantities such that the central limit theorem (CLT) is valid, i.e. the quantity
s; is more Gaussian than the single summands. Thus, ICA can be performed by
maximization of the absolute value of the kurtosis kurt (s;) as a measure of Non-
Gaussianity. The kurtosis is defined by kurt (y) = E [y*] =3 (E [y?] )2 using the
fourth and the second moments E [y*| and E [y?], respectively. If we consider
w = m,;, Hebbian-like learning interprets the vector w as a weight vector of a
linear perceptron, which is trained by a sequence x (t) of input vectors [8, 23].
A it was shown in [11, 12, 17, 24], Hebbian-like ICA-learning can be achieved
applying the weight vector dynamic

w(t+1) =w()+e [0 x(t) - g((wt),x () -/ ((wx)?)w®)] @)

with a nonlinear modulation function g (y) = ay — by>. The function f is a non-
vanishing scalar and ¢ = +1 is a sign that determines whether we are minimizing
(0 = —1) or maximizing (¢ = +1) the kurtosis. The constants are chosen to be
a > 0 and b > 0. The maximization of the positive kurtosis is obtained for a = 0,
the optimization of the negative kurtosis requires @ > 0 [11]. The value 0 < &; <
1 is the learning rate. The term x (¢) - g ((w (t) ,x (¢))) reflects the Hebb-signal-

enhancing idea with the perceptron output learning function g ({(w (t),x (t)))

2

whereas f (E [(w,x) D w (t) defines a constraint term to prevent w (t) from

infinite growing. The learning rule (3) performs a stochastic gradient descent on
the cost function

J(w) =0 (—‘2‘ E [<w,x>2} . g E [<w,x>4]) +F (E [(w,x>2D (4)

with F' (y) = f (y).
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3 Nonlinear Kernel Independent Component Analysis by
Hebbian-like Learning

Kernel ICA and BSS make use of the nonlinear kernel mapping to perform a
nonlinear ICA v (¢) = h(s(t)) for an unknown non-linear function h. Several
approaches are discussed [2, 7, 20]. We concentrate on the approach presented
by Harmeling et al. in [7]. We consider a generally nonlinear kernel data map

O:Vosv— d(v)eH (5)
with a positive definite kernel
Ko (v, w) = (2(v), ®(W))3 (6)

for all v,w € V and (-, -)3 such that the space H is a reproducing kernel Hilbert
space (RKHS) H uniquely corresponding the kernel to a reproducing kernel kg
a canonical manner [1, 21]. The norm [|®(v)|,; = /ka(®(v), ®(v)) of this
RKHS induces a metric dy (®(v), ®(w)) = /kao (v, V) — 2k (V, W) + ko (W, W)
based on the kernel k¢ [27]. Steinwart has shown that continuous, universal
kernels induce the continuity' and separability of the corresponding feature map
® and the image Z,,, = span (P (V)) is a subspace of H [28]. Let b; form an
orthonormal basis in Z,,. Then

®(v) =) (®(v),bi)y - b; (7)

is the representation of an image vector ®(v) in Z,,. In analogy to the linear
ICA/BSS we consider now the linear mixing problem in the Hilbert space H:

O(v) = My [0(s)] (8)

with My being a linear operator in . We denote by Mé“_[ the kth component
of M. Because H is a RKHS, each linear operator can be expressed in terms
of the inner product, i.e.

M, [@(s)] = (M, B(s))n- 9)

Using the basis representation form(7) we obtain

Or(v) = (M3, D (®(s),bi)a - bi) = Y (B(s),bi)se - (M, bi)y. (10)

g g

We remark at this point that (®(s),b;)y is a random variable because of the
stochastic character of s and, hence, ®(s) is random too. Therefore, we can state
that the sum in (10) is more Gaussian than the single components according to
the CLT. In consequence we can take ®(v) as a quantity the absolute kurtosis
of which has to be maximized for separating independent components in Z,, by
the same arguments as for linear ICA.

INote that continuity ensures the existence of the inverse mapping ®~1.
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Figure 1: Visualization of the original signals (top) and the mixed sources (bottom).

For a finite number N of samples in V' the number of basis elements b; is
D < min (n,N). In that case we can simplify (10) to

®p(v) =D - re(®7! (M},),s) (11)

using the reproducing property of the inner product of a RKHS and keeping in
mind definition (6) of the kernel.
In the last step of our argument we replace the kernel map ® by

vV, — th@ (12)

with dy, (v, w) = dy (D(v), ®(w)). For universal continuous kernels V;_ is a
compact vector space with the kernel induced metric d,,. Note that U is for-
mally the identity map but changing the metric, and, hence, generally nonlinear.
Moreover, it turns out that the kernel space Vg, is isometric and isomorphic
t0 Zy, [29]. Under this assumption, the operator My, is equivalent to a conven-
tional matrix M but M [¥(s)] is defined by

M* [U(s)] = D - kg (my, s) (13)

where my, is the kth row vector of M. Hence, we can replace the Euclidean inner
product in (3) by ke (my,s) to obtain an ICA in Vg, as a Hebbian-like kernel
ICA (KICA) based of the original data, which realizes a non-linear de-mixing
because of the non-linear kernel mapping ® or its analagon W.

4 Exemplary Simulations

In an illustrative simulation we consider a non-linear mixture of two signals ob-
tained by linear mixing in the kernel space and subsequent back transformation
into the data space. The sources and the mixed signals are depicted in Fig.
1. Then we applied the original linear Hebbian-like ICA according to (3). The
kurtosis was estimated using the online learning

pa(t+1) = (1 =& pa(t) + & (w(t),x (1) (14)
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Figure 2: Estimated source signals by original Hebbian-like ICA based on the Eu-
clidean inner product (top) and by the kernelized variant (bottom).

suggested in [11] with an averaging parameter of £ = 0.05. In comparison we
estimated the source signals by the kernelized variant replacing the inner prod-
uct (w(t),x(t)) by the Gaussian kernel G (w (t),x(t)). The results of both
approaches are visualized in Fig. 2. We observe that the kernelized variant is
better able to de-mix the signals and to reconstruct the original signals than
the original Euclidean approach. The obtained integrated squared errors oft the
linear model are e}, = 22.3 and €%, = 55.0 for the two signals, respectively,
whereas the kICA yields e; ;-4 = 23.1 and €3, 4 = 34.8. The respective corre-
lation coefficients are p}-, = 0.86 and p?, = 0.81 for the linear model. The
KICA yields p};o4 = 0.88 and p?;-4 = 0.84. The improved performance of
kICA is due to its non-linear character implicitly realized by the kernel trick.
However, the kICA is very sensitive.

5 Conclusion

In this paper we introduced a kernelized variant of the original Hebbian-like ICA
proposed by Hyvirinen&QOja. We showed that the Euclidean inner product in
the original approach can be replaced by an universal and continuous kernel with
an appropriate interpretation in the resulting generally non Euclidean kernelized
data space. Thus, a non-linear demixing can be realized. We demonstrated in
an exemplary application that this non-Euclidean variant of Hebbian-like ICA
is able to extract non-linearly mixed signals, however, it is difficult to stabilize
the model.
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