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Abstract. Manifold learning is an important theme in machine learning.
This paper proposes a new visualization approach to manifold clustering.
The method is based on pie charts in order to obtain meaningful visu-
alizations of the clustering results when applying a manifold technique.
In addition to this, the proposed approach extracts all the existing rela-
tionships among the attributes of the different clusters and find the most
important variables of the manifold in order to distinguish among the dif-
ferent clusters. The methodology is tested in one synthetic data set and
one real data set. Achieved results show the suitability and usefulness of
the proposed approach.

1 Introduction

Many manifold learning methods have been developed in the last decade, and it
has become a hot topic. These dimension reduction methods can be approached
from the point of view of either unsupervised learning or supervised learning.
They can be divided into linear and non linear methods. Recent research has
focused on nonlinear manifolds, and the long list of “manifold learning” algo-
rithms provide sophisticated examples of dimension reduction [1, 2]. In the
context of machine learning, manifold methods may be viewed as a preliminary
feature extraction step, after which pattern recognition algorithms are applied.
In this paper, clustering algorithms are used after applying the manifold tech-
nique. Moreover, as it is well-known, data visualization can greatly enhance
the understanding of multivariate data structures, and hence cluster analysis
and data visualization often go hand in hand. So that, to visualize the cluster-
ing results after applying the manifold can be of great interest. Therefore, this
paper presents a new use, in manifold field, of the Sectors on Sectors (SonS)
visualization technique, recently proposed by the authors in [3], in order to
show the results of the clustering carried out on the manifold. Supervised ap-
proaches were used because this paper deals with two classification problems
where the information about the label of each pattern is available. In order to
solve these problems, both linear and nonlinear methods have been used. The
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methods used to solve these problems were Linear Discriminant Analysis (LDA)
[4], Neighborhood Components Analysis (NCA) [5] and Maximally Collapsing
Metric Learning (MCML) [6].

2 ManiSonS: Sectors on Sectors (SonS) applied to Mani-
fold visualization.

Sectors on Sectors (SonS) is a visualization method that extracts visual infor-
mation of data groups by representing the number of instances in each group,
the value of the centroids of these groups of data and the existing relationships
among the several groups and variables [3]. This method is based on the well-
known pie chart visualization. Each cluster is represented by one slice of a circle
(pie sectors). The arc length of each pie sector is proportional to the number
of patterns included in each cluster. By means of new divisions in each pie sec-
tor and a color bar with the same number of labels as attributes, the existing
relationships among centroids’ attributes of the different clusters can be inferred.

Due to the importance of obtaining knowledge about the Manifold, the use
of new visualization methods is paramount. ManiSonS makes possible to obtain
visual information about the clustering in the reduced space. Figure 1' repre-
sents the three steps followed to create the SonS visualization method; which
are stated as follows:

1. Division of one circle on several sectors depending on the number
of clusters found in the manifold: First of all the circle is divided into
several pie segments or sectors corresponding to each cluster. The arc
length of each sector is proportional to the number of patterns included in
each cluster. The number of patterns belonging to each cluster is shown
within parentheses. In this way, the significance of each cluster is easily
recognizable (Figure 1, left).

2. Division of the pie sectors depending on the number and the
value of attributes: After the first step, each sector is divided into
as many subsectors as variables presented in the problem. The inner part
corresponds to the first variable, and going outwards, the next variables are
appearing. Each one of these parts vary its radius. This radius corresponds
to the relative value of each variable, with respect to the sum of all of
them?. That is, let X be a centroid corresponding to one cluster, so that,

X ={x1,29,...,zN} (1)

IFigures included in this paper are available in color at http://idal.uv.es/ManiSonS

2Each variable is scaled between [0, 1] before carrying out the clustering in order to avoid
a biased model. Moreover, the scaling makes that the relevance of each variable (represented
by the size of the radius) is independent on its range, that is, the relevance is not higher even
though the variable has a higher range. The use of scaled variables, guarantees that the radius
is a measure of the relevance of the variable within the cluster.
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Fig. 1: The three steps followed to create the SonS visualization method. From
left to right: producing as many sectors as clusters; splitting each sector accord-
ing to the attributes; and color coding to identify real values.

Then, the radius of each subsector (corresponding to each centroid at-
tribute) is calculated as follows:

ri=—x——,i=1...N (2)

In this way the bigger the radius corresponding to each variable, the higher
the weight of the variable and therefore, the more relevant the feature.
This is a good method to identify the relevance of each variable within
each cluster in a straightforward way (Figure 1, middle).

3. Color coding for identifying the real value of features: Attached to
the graph, there is a color bar with the same number of labels as variables
(each label for each variable). The mean value of the variables of each
class (normally, the centroid) is codified by means of colors®. The value of
the color for the first feature (inner subsector), is given by the first column
label, the second feature by the second column label and so on. In this
way, it is possible to know the exact value of each variable for each cluster
centroid (Figure 1, right).

3 Results

3.1 Data sets

The first data set is a synthetic data set created to show the performance of
the proposed visualization method. The data consists of three clouds of points
defined by six coordinates. The first three coordinates contain the most relevant
information about the three different clusters, while the remaining three provide
irrelevant information or noise, that is, very small values that barely provide
information. Table 1 shows the variation ranges of each one of the variables.

3This is automatically extensible to other measures such as the median, which is a much
more adequate prototype measure in presence of outliers, for instance. Therefore, SonS is not
restricted to the use of a particular prototype measure.
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| Coordinate | max. | min. | mean | o
1st -14.0083 | -34.9812 | -18.1518 | 6.8112
2nd 15.9955 0.0119 12.2174 | 5.6212
3rd 30.9962 | 10.0240 | 17.4124 | 6.2271
4th 0.0200 0.0100 0.0151 0.0029
5th 0.0200 0.0100 0.0150 | 0.0028
6th 0.0200 0.0101 0.0153 | 0.0028

Table 1: Information about the variable ranges of the synthetic data set.

Moreover, as a real example, the seeds data set* was used, which contains X-
ray images of wheat. The examined group comprised kernels belonging to three
different varieties of wheat: “Kama”, “Rosa” and “Canadian”, 70 elements each,
randomly selected for the experiment. Studies were conducted using combine
harvested wheat grain coming from experimental fields, explored at the Institute
of Agrophysics of the Polish Academy of Sciences in Lublin. The data set will be
used for clustering tasks. To construct the data, seven geometric parameters of
wheat kernels were measured (Area, Perimeter, Compactness, Length of kernel,
Width of kernel, Asymmetry coefficient, Length of kernel groove). All of these
parameters were real-valued continuous.

3.2 Performance evaluation
3.2.1 Synthetic Data Set

As previously mentioned, three different manifolds have been used to tackle this
problem (LDA, NCA and MCML) because they are supervised techniques, that
is, they make possible to introduce labels in the learning procedure. Moreover,
they support exact out-of-sample extension, that is, they learn an explicit func-
tion between the data space and the low-dimensional latent space, with the same
number of patterns in both spaces. After applying the different dimensionality
reduction techniques (the data was reduced to two dimensions), a clustering
based on k-means algorithm was performed.

Since the three manifolds produced the same success rate (100%), after ap-
plying the clustering algorithm, only the results obtained by NCA are shown.
Figure 2 shows the results provided by the ManiSonS visualization method after
applying the clustering algorithm on the manifold.

Figure 2 provides relevant information about the clustering carried out in
the reduced space. For example, it can be seen which variables are important to
separate between clusters. To this end, those variables that take high values for
one cluster and low values for the other one, must be sought. For example, V1 is
the most important variable to separate clusters C1 and C2, since it takes high
values for C2 and low values for C1. In order to separate between C1 and C3,
the two variables of the manifold are useful. The input pattern will belong to C1

4http://archive.ics.uci.edu/ml/datasets/seeds. (Last checked November 2012 )
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Fig. 2: ManiSonS visualization method applied to the synthetic data set.
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Fig. 3: ManiSonS visualization method applied to the Seeds data set.

if V1 takes low values or also if V2 takes high values. Otherwise, it will belong
to C3. To separate between C2 and C3, the most relevant variable becomes V2.

3.2.2 Seeds Data Set

In this section, the three different manifolds that were used in the previous
section are used again to tackle this problem. The dimensionality reduction
technique finally presented is LDA (again the data was reduced to two dimen-
sions) since it provided the highest success classification rate (96.67%). Figure 3
shows the results provided by the ManiSonS visualization method after applying
the clustering algorithm on LDA manifold.

As shown in Figure 3, it is possible to characterize each cluster by means
of the variables of the manifold. For example,“Kama” cluster is characterized
because it is the only cluster in which the 2nd variable takes minimum values
(dark blue). “Rosa” cluster is characterized because it is the only cluster in which
1st variable takes maximum values (dark red). The same occurs in “Canadian”
cluster, but with the 2nd variable. Besides characterizing each cluster using the
values that one variable in particular can take (or using the values of several
variables in other possible problems) it can be determined which variables, or
planes in the dimensional space of the manifold, are relevant to separate between
clusters. For example, in order to distinguish between patterns belonging to
“Kama” from “Rosa” variety, the 1st variable is very relevant. If the 1st variable
takes low values, the wheat will belong to “Kama” variety, and if it takes high
values it will belong to “Rosa” variety. For distinguishing between “Kama” and
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“Canadian” variety, the 2nd variable takes the highest relevance. If this variable
takes low values, the wheat will belong to “Kama” variety, while if it takes high
values it will belong to “Canadian” one. Finally, for distinguish between “Rosa”
and “Canadian” variety it should be checked the 1st variable. If it takes low
values, the wheat will belong to “Canadian” variety, while if it takes high values
the wheat will belong to “Rosa” one.

4 Conclusion

In this paper, a method called ManiSonsS, which is based on SonS method ap-
plied to manifold clustering, has been presented by means of two examples (one
synthetic and one real), demonstrating its applicability in order to extract rules
from the visualization of the manifold clustering. The proposed method has
shown to be a very useful tool when visualizing the clustering carried out on a
manifold since it is possible to infer relationships among features and clusters.
Moreover, it makes possible to determine which variable, or planes in the di-
mensional space of the manifold, are relevant to separate between clusters. The
proposed graphical procedure helps to extract knowledge and interpretation and
to obtain a better understanding about the results of the manifold.

This method can be used even with data sets with a large number of variables
due to the fact that dimensionality reduction will make possible to represent the
results of the clustering in the low-dimensional space without overloading the
graph.
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