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Abstract. Correlation-based multidimensional scaling is proposed for
reconstructing pairwise dissimilarity or score relationships in a Euclidean
space. Pearson correlation between pairs of objects in source and target
space can be directly maximized by gradient methods, while gradient op-
timization of Spearman rank correlation profits from a numerically soft
formulation introduced in this work. Scale and shift invariance properties
of correlation help circumventing typical distance concentration problems.

1 Introduction

During the last decade, data embedding techniques are intensively studied for
converting source data, defined in a relational way by pairwise scores or dissim-
ilarities, into approximated relationships of a typically Euclidean space. Low-
dimensional embedding spaces resulting from prominent techniques like Isomap
and stochastic neighbor embedding allow for a substitutional visual inspection
of original data relationships [1, 7]. Meaningful embeddings aim at an opti-
mum reconstruction of the original relationships. Distance reconstruction is a
well-known goal, but it cannot handle non-metric data like asymmetric score re-
lationships. Therefore, a more general goal is the reconstruction of object-related
similarity profiles in the input and embedding spaces. Pearson correlation for
global (matrix-wide, matrix-conditioned) rather than for local (object-specific,
row-conditioned) similarity was introduced for implementing high-throughput
multidimensional scaling (HiT-MDS) [6]. Global comparisons may bare some
problems, e.g., if score calculations depend on the size of structures compared;
then, large structures might misleadingly yield larger scores than smaller, more
tightly matching structures. In addition to turn symmetric matrix-conditioning
into asymmetric row-conditioning, locally weighted rank correlation is intro-
duced. Since neighborhood rankings of embedded Euclidean points are typically
asymmetric, asymmetric similarity profiles can be reconstructed.

Rank correlation bears the challenge of optimizing discrete order relation-
ships. Non-metric MDS based on isotonic regression (isoMDS) or approximate
distance–rank mappings are possibilities to achieve efficient rank-based recon-
structions [8, 4]. However, these are matrix-conditioned and/or restricted to
symmetric dissimilarity data. For circumventing remaining non-differentiability
properties of the generally well-suited fuzzy Kendall rank correlation [5] a soft
formulation of Spearman’s rank correlation is proposed and employed here for
gradient-based optimization of correlation-based MDS (cbMDS).
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2 Soft Rank Embeddings

Instead of strict order optimization a soft version of the Spearman rank correla-
tion is maximized between pairwise similarity relations of n objects in the input
space S and their reconstructions DX as d-dimensional embedding points X:
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of adjustable data-representing points Xi ∈ Rd, and signs of scores S are flipped
to make smaller values express smaller ’distances’.

For gradient-based optimization the gradient of the correlation in Eq. (1)
with respect to the i-th point locations Xi is provided as the product of the
Jacobians of the inner and outer functions:
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The notation J r̄|−S(X
i) refers to the Jacobian of function r̄ given fixed inverted

scores −S with respect to Xi. Eq. (2) contains distance matrix derivatives
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2.1 Attribute-weighted Pearson correlation

Linear correlations between two vectors w and u are measured by the Pearson
correlation coefficient rλP(w,u) ∈ [−1, 1] implementing λ-weighted attributes:

rλP(w,u) =
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i=1 λ
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The gradient with respect to the second argument vector u is given by [6]

∂rλP(w,u)
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=J rλP|w(u) = rλP(w,u) · λ ◦
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Settingw = −Si and u = DX
i the gradient in Eq. (5) can be plugged into Eq. (2)

which allows to maximize the correlation between negative similarity scores and
pairwise Euclidean distances of complex input space and low-dimensional embed-
ding, respectively. Localized influence of attributes, i.e. neighbors, is achieved
for λi 6= 1. Rather than seeking a diagonal in the Shepard diagram, i.e. least
squares distance reconstructions, straight lines with any slope (distance scaling)
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and intercept (distance shift) are allowed here to effectively by-pass the distance
concentration problem. This is the basic idea of High-Throughput Multidimen-
sional Scaling (HiT-MDS) [6]. Non-Euclidean input data relationships, though,
are more reliably handled by looking at order relationships, as discussed next.

2.2 Soft weighted Spearman rank correlation

The Spearman rank correlation coefficient rρ is easily obtained by first converting
data vectors into the order ranks of their elements being then applied to the
Pearson correlation in Eq. (4):

rρ(w,u) = rλP(rnk(w), rnk(u)) (7)

Instead of utilizing a sorting operation, the ranking of vector elements in u
can be alternatively achieved by summing up rows of the indicator matrix R:

rnk(u)=

∑n
i=1 R(u1,ui)

. . .∑n
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 for R(u) =
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. . .
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 . (8)

For the Heaviside step function R(uk,ul) = H(uk − ul), providing zero for
negative arguments and else one, correct ranks are obtained for vector elements
uk in the absence of ties. Using the standard deviation σu and its derivative
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the step function H(uk − ul) can be replaced by a differentiable sigmoid
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with mid-tied ranks being approximated for κ → ∞. Thus, large κ are preferred,
but 5 < κ < 100 is numerically sensible. Derivatives for Eqns. 8 and 10 are
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The Jacobian of the soft rank J rnk(u) is constructed by the derivatives in Eq. (11)
corresponding to the proper summation indices in Eq. (8). Since n summations
are carried out for which the Jacobian involves derivatives for all variables u1...n,
J rnk(u) is an n× n matrix.

79

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.



Finally, the gradient vector of the soft Spearman rank correlation is

∂rρ(w,u)

∂u
= J rλP|rnk(w)(rnk(u)) J rnk(u)(u) . (13)

Substituting w = −Si and u = DX
i this gradient is plugged into Eq. (2) for

optimizing a point set X with ranks of Euclidean relationships best matching
the ranks of original data relationships. In practice, the memory-limited quasi-
Newton l-BFGS gradient optimization scheme provides rapid convergence.

2.3 Experiments

An artificial and a real-world data set are embedded in a two-dimensional space,
the first one for demonstrating the general validity of rank-based reconstruction,
the second one showing the potential for complex relationships in protein data.

2.3.1 Artificial 2D data set

For neighborhood-preserving embedding techniques it is an interesting exercise
to carry out embeddings of known 2D relationships in a 2D reconstruction space.
Deviations from a perfect reconstruction indicate potential bias in the neighbor-
hood model. A set of 236 points is considered that form two overlaid shapes,
a logarithmic spiral and a rectangle, and two small clusters of three and four
points. Thus, irregular spacing (spiral) and tied distances (rectangle) complicate
the embedding task as well as the preservation of the two small clusters.

Figure 1 shows the embedding quality and behavior, referring to information-
theoretic assessment of neighborhood retrieval [2], and example embeddings for
this artificial data set. The proposed cbMDS approach, tSNE with perplexity

10 and the weighted cbMDS approach with λi = exp
(

−S2
i

(0.5·n)2

)
are compared.

Every algorithm was run 10 times with random initialization. Panel A1 shows
the mean quality (Q), 1 being maximum, and behavior (B), 0 being least biased,
for different neighborhood sizes K, and the standard deviation over the 10 runs.
Panel A2 to A4 show embeddings of the different techniques. The cbMDS (A2)
reconstructions are almost perfect, just with little tension near the center of the
spiral, while tSNE (A3) breaks the structures more and more apart the smaller
the perplexity is chosen. If cbMDS is forced to favor small neighborhoods by
the above λ-weighting, this leads to the fragmented result in panel A4.

2.3.2 SCOP protein data set

A real-world database is visualized containing structural classification of proteins
(SCOP), being online available as supplemental material [3]. It contains p-values
of pairwise Smith-Waterman alignments of 4352 proteins using an asymmetric
substitution matrix. The 4352×4352 matrix is asymmetric, with smaller entries
indicating higher similarity. The matrix covers a broad spectrum of protein fam-
ilies with 2888 hierarchically organized unique labels. For ease of experimenta-
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Fig. 1: Quality plots and example embeddings for the two data sets: Artificial
2D (A1-A4) and SCOP (B1-B4). Details are described in the text.
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tion we subset the database by picking each 10th alignment pair probability of
columns and rows ordered ascendingly by their protein identifier.

The panels B1–4 in Figure 1 show the results of the SCOP experiments.
For small neighborhoods tSNE shows highest quality and highlights potential
protein clusters; yet, quality drops rapidly in the range of K = 4–41. Weighted
cbMDS with λ set like before has a lower quality in small neighborhoods, but is
constantly increasing until it outperforms tSNE at K > 20. HiT-MDS exhibits
characteristics similar to cbMDS but at higher tension levels.

2.4 Conclusions

A correlation-based relational score embedding scheme has been introduced that
maximizes correlations between potentially asymmetric object similarities in the
source and embedding space. Using a soft formulation of Spearman rank cor-
relation, gradient-based optimization schemes can be successfully applied for
reconstruction of the neighborhood rank order. In terms of co-ranking criteria
a comparison with tSNE shows a better overall performance of cbMDS. The
visual results for the protein data are more appealing in tSNE, thanks to its
good local neighborhood reconstruction, but for the identity reconstruction in
2D tSNE suffers from that inevitable local bias.

Soft rank optimization has a general impact on machine learning problems.
Computational demands related to the indicator matrix and its Jacobian can be
lowered by computational capabilities of graphics processing units (GPU). Fu-
ture work is needed to characterize potential invariances when turning distances
into ranks and loss of information when transforming hard into soft ranks. A
MATLAB/GNU-Octave package with GPU support is online available as pack-
age ’cbMDS’ at https://mloss.org/.
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